Microcontroladores PIC16F84 e PIC16F628

Esta apostila foi escrita no final de Julho de 2004 e teve a
colaboracao de:

Derli Bernardes
Ivon Luiz

José Domingos
Luiz Claudio
Edson Koiti
Luciana Petraites

Para completar o aprendizado desta apostila baixe os seguintes arquivos da
pagina www.luizbertini.net/microcontroladores/microcontroladores.htmi

- telas do MPLAB 5.7.40

- sirene.rar

- teclado_bas.rar

- MT8870.rar

- DELAY.rar

- PIC16F84A.rar

- PIC16F62XA. rar

- Manual Pratica.rar

- Converséao do 84 para o 628.rar
- PIC16F627_PIC16F628

- comandos.rar — toda as instrugdes em uma soé tabela.
- display7seg.rar

- picdisp.rar

Todo este material é fornecido gratuitamente.

Siga as instrucdes da pagina e desta apostila.

O autor: o autor é um cara maluquinho que gosta muito de eletrénica e estuda
microcontroladores desde 1997. Ja leu um monte de livros, ja escreveu um monte
de livros, ja fez um monte de projetos com e sem PICs. Mas ndo € nem um pouco

melhor do que ninguém.

Agradeco a vocé que fez o download desta apostila e espero que visite minha
pagina de livros e compre meus outros livros e baixe minhas outras apostilas.

Espero que vocé compre meu livro sobre PICs. Sai em breve e é bem mais
completo que esta apostila.



Nem todos os projetos apresentados estdo completos dentro dela, ou seja, vocé
tera que baixar mais arquivos da minha pagina sobre microcontroladores. L4 na
pagina vocé encontrara algumas dicas de como usar este material. Esta apostila
nao é perfeita, pois eu também nao sou perfeito.

Lembre-se: se eu aprendi microcontroladores, vocé também consegue.
Abracos.

Luiz Bertini

Capitulo 1
MICROPROCESSADORES E MICROCONTROLADORES

E tudo comegou com os microprocessadores.

Primeiro eram de 4 bits, depois de 8 bits e assim por diante.

Mas o que € um microprocessador? E um chip, com alta integragdo de componentes, que precisa
de memodria RAM externa, memoria EEPROM externa, HD para armazenamento de programas e
outros diversos periféricos. Ou seja, vocé usa um microprocessador dentro de um
microcomputador e ele, em conjunto com um monte de outros Cls, trabalham direitinho.

Por outro lado um microcontrolador é um componente completo por si s6. Basta um programa e
ele executa uma fungéo especifica.

Dentro do microcontrolador temos memaria RAM, FLASH, EEPROM ou E?PROM.

Mas, tudo isto comegou com a Idgica digital baseada na condugao ou nado de transistores, Fets ou
diodos entre outros. Mas para nao entrar neste detalhe, vamos simplificar resumindo esta légica
em dois nimeros ou como falamos muito, em dois digitos: O 0 (zero) e 0 1 (um).

Quando falamos em 0 (zero), estamos nos referindo a zero Volt DC e quando falamos em 1 (um)
estamos falando em + Vcc. No caso dos microcontroladores PIC, geralmente, estaremos falando
que:

0=GND e 1=5Vcc

Tenha em mente, entdo, que a légica digital se baseia em niveis de tensado continua. E que os
microcontroladores usam a logica digital, e que um programa de computador ou para um
microcontrolador, por mais complexo que seja, se resume em uma enorme quantidade de 0 (zero)
e 1 (um) ordenados corretamente.



Capitulo2
TIPOS DE MEMORIAS

J& falamos sobre alguns tipos de memarias, vamos agora ver com mais detalhes o que elas sdo e
como funcionam além de suas aplicagbes, € claro.

2.1. Memoria ROM:

E um tipo de memdria que sé pode ser gravada uma vez e ndo pode ser apagada. Existem PICs
que sé possuam este tipo de meméria e que se vocé gravar um programa errado ja era.

Onde temos uma memodria deste tipo? Dentro de um computador pessoal, é a famosa “BIOS”.
Mantém a gravacao sem alimentacgéo.

2.2. Memoria RAM:

E um tipo de memdria que pode ser gravada, apagada, regravada, mas, que tem um porém,
desligando a alimentagdo dela todos os dados se perdem. E muito utilizada para gravar
informacdes temporarias que serado utilizadas em um programa. Nao mantém a gravacdo sem
alimentacéo.

2.3. Meméria EPROM:

Este tipo de meméria permite a gravacdo, mas, para apagar os dados € necessario um banho de
luz ultravioleta, para isto, este tipo de memoria tem uma janela. Existem PCs com este tipo de
memoria e que sdo popularmente chamados de “PICs janelados’. Mantém a gravagdo sem
alimentagéo.

2.4. Meméria EAROM:

Este tipo de memoria pode ser gravada e para apaga-la basta um nivel de tensdo adequado. Um
inconveniente deste tipo de memoria usada em muitos TVs antigos, € que ela precisa de uma
tensao de - 30 Volts para funcionar corretamente. Mantém a gravagdo mesmo sem alimentacao.

2.5. Meméria EEPROM ou E2PROM:

Esté é a evolugdo das memorias anteriores. Podem ser gravada e desgravada centenas de vezes
apenas com a aplicacao de niveis corretos de tensdo. Um exemplo pratico deste tipo de meméria é
a famosa “24C04” e toda a sua familia. Mantém a gravagcdo mesmo sem alimentacgao.

2.6. Memoria FLASH:

E a suprasumo das memorias, mais rapida de gravacao e a regravagao muito mais facil. Permite
uma infinidade de usos. Desde a gravacao de audio e video digitalizado até um programa em um
PIC. Mantém os dados e a gravacao mesmo sem alimentagéo.

Capitulo 3
O QUE E UM REGISTRADOR

Um registrador € um enderego na memoéria, que em nosso caso sao formados por 8 numeros, ou
melhor, 8 bits. Cada bit deste pode assumir o valor de 1 (um) ou 0 (zero).

Temos entdo um endere¢o que podemos chamar de registrador. Este registrador tera 8 bits. Estes
bits podem ser 0 (zero) ou 1 (um).

Muitas vezes chamamos estes bits de Flags. Flags entdo é um bit dentro de um registrador.

Mas o que é um Bit?

Imaginemos 8 posicoes:

Tabela 3.1



Cada posicao pode ter um valor de 0 (zero) ou 1 (um). Esta posicdo com um valor € um bit, ou
melhor, bit é o valor que ha dentro da posicao.
Quando juntamos 8 bits, como no exemplo a seguir:

“00110011” — Chamamos isto de byte. Um byte entdao é um conjunto de 8 bits.
As vezes os bits podem ser agrupados em niimeros de 4, veja:

“0101” = Damos a isto o nome de “nibble”.

Outras vezes o0s bits podem se agrupar com nimeros maiores que 8, veja:

“001100110011” = Chamamos isto de “Word":

Nos pics existem registradores especiais, vamos citar os trés mais importantes:

Intcon Option-reg Status

Podemos através dos bits ou flags destes registradores “ajustar’ o funcionamento do PIC ou ler
como ale esta operando, para isto basta escrever ou ler os flags.

Capitulo 4 )
ARQUITETURA DE CONSTRUGAO

Os primeiros microcontroladores usavam uma estrutura interna que tinha apenas um caminho para
trafegar os dados e enderecos.

Lembre-se, dados sédo informacdes e enderecos sdo os locais onde serdo armazenados 0s
dados.

O nome mais correto para este “caminho” é Bus. Com apenas um bus tinhamos que trafegar hora
enderecgos, hora dados.

Esta arquitetura de construcao recebe o nome de “Von Neumann’.

Hoje em dia, os PICs particularmente, trabalham com dois bus. Um para dados e outro para
enderecos. Desta forma ele fica mais rapido, pois podem fazer duas coisas ao mesmo tempo.

Este tipo de arquitetura recebe o nome de “Harvard’.

Os PICs possuem ainda um outro recurso, chamado de “Pipeline’. Com este recurso o
microcontrolador consegue buscar uma informagédo enquanto processa outra.

Os microcontroladores mais antigos usavam um conjunto de instrugées conhecidos por “CISC’.
Este conjunto, ou set de instrucdes possuia mais de 100 instrucdes, o que dificultava a
memoriza¢do do programador.

Os PICs usam um set ou conjunto de instrucdes reduzidas, chamados de “RISC”. Este set tem
entre 33 a 35 instrugées dependendo do PIC. Isto ajuda na memorizag&o, mas, exige mais do
programador. E como falar fluentemente um outro idioma, conhecendo poucas palavras, all right?

Capitulo 5
PIC 16F84-04

Vamos agora ver a pinagem e algumas caracteristicas do PIC 16F84-04.

5.1. Pinagem:



Fig. 5.1

Esta pinagem corresponde ao encapsulamento Dual In Line ou DIP.
O pino 15 também pode ser usado como saida do oscilador.
O pina 16 também pode ser usado como entrada do oscilador.

5.2. Caracteristicas Elétricas:

Alimentagdo de 2 a 6Vce, o mais comum é 5Vee. Consumo de corrente entre 26pA a 2maA.

A corrente varia, pois o PIC tem um consumo diferente de acordo com a freqiiéncia do clock e sua
condugéo de funcionamento.

- Com clock de 4MHz = 2mA;

- Com clock de 32 kHz = 150pA;

- Em stand-by = 70uA.

E bom lembrar que este € o consumo do PIC, caso tenhamos 4 Leds acesos em suas saidas e
cada led consuma 10mA, deveremos somar 40mA para saber o consumo total de corrente e
qguanto a fonte deve fornecer.

Normalmente uma fonte com o CI LM7805 ¢ suficiente para a maioria dos projetos.

Cada pino tem uma fung¢do, mas antes de falarmos deles individualmente, vamos ver as duas
portas que ele apresenta. Mas, vocé pergunta: o que € porta (€ o que tem na entrda da sua
casa??!)?

Porta € um conjunto de terminais que podem funcionar como entrada ou saida ou ambos e que
tem um registrador préprio. Neste PIC temos o “Port A” e “Port B que chamamos de “porta e
portb’.

O portb é composto pelos pinos 6, 7, 8,9, 10, 11, 12 e 13 e que correspondem a:

Ra0, Ral1, Ra2, Ra3, Ra4, Ra5, Ra6 e Ra7.

Podemos perceber que séo 8 bits. Esta porta tera seus terminais definidos como entrada ou saida
através dos valores que colocarmos nos flags do registrador Trisb.

O porta é composta pelos pinos 17, 18, 1, 2 e 3, que correspondem a: Ra0, Ra1, Ra2, Ra3 e Ra4.

Esta porta tera seus pinos definidos como entrada ou saida de acordo com os ajustes dos flags do
registrador Trisa.

Podemos perceber que o porta s6 tem 5 bits, mas, o registrador deve ser ajustado como se ele
tivesse 8 bits.

E comum usarmos o porta, ou parte dela, como entradas onde serao ligadas chaves de presséo,
por exemplo.

Também é comum usarmos o portb, ou parte dela, como saida.

5.3. Funcao de Cada Pino:

Pino 1 = 1/0O — Porta, bit 2 ou Ra2;

Pino 2 = 1/0 — Porta, bit 3 ou Ra3;

Pino 3 = 1/0O ou entrada do timer0 — Porta, bit 4 ou Ra4;

Pino 4 = Reset — MCLR\ - a barra indica que o reset é feito colocando este pino em 0 Volt,
portanto, para que o Pic funcione, ele deve estar em + Vcc;

Pino 5 = Vss ou terra;

Pino 6 = 1/O ou interrupgao externa — Port B, bit 0 ou RbO;

Pino 7 = 1/0 — Port B, bit 1 ou Rb1;

Pino 8 = 1/0 — Port B, bit 2 ou Rb2 ;

Pino 9 = 1/0 — Port B, bit 3 ou Rb3 ;

Pino 10 = 1/O — Port B, bit 4 ou Rb4 — pode ser usado como interrupgao;
Pino 11 = 1/O — Port B, bit 5 ou Rb5 — pode ser usado como interrupgao;
Pino 12 = 1/0O — Port B, bit 6 ou Rb6 — pode ser usado como interrupgao;
Pino 13 = 1/O — Port B, bit 7 ou Rb7 — pode ser usado como interrupgao;
Pino 14 = Vcc ou Vdd;



Pino 15 = Osc 2 onde deve ser ligado um terminal do ressonador ou cristal. Caso seja usado um
clock formado por uma constante RC, ele sera a saida do clock dividido por 4;

Pino 16 = Osc 1 onde deve ser ligado o outro terminal do cristal ou ressonador. Caso se use um
circuito RC este pino serd a entrada.

Fig. 5.2

Pino 17 = 1/O — Port A, bit 0 ou Rao;
Pino 18 = I/O — Port A, bit 1 ou Ra1.

5.4. Outras Caracteristicas:

1K de espago para palavras ou Words de 14 bits para programa. 1K corresponde a 1024
posicoes e em cada posi¢do desta, pode ser colocada uma instrugdo do programa. Esta memoria
¢é a Flash.

64 bytes de memoria EEPROM para dados (como senhas e outras informagées).

68 bytes (lembre-se um byte é um conjunto de 8 bits) de memodria RAM, que é onde guardamos
nossas variaveis.

Pilhas ou Stack: Com 8 niveis (imagine que vocé quer guardar 8 caixas iguais uma sobre a outra,
cada caixa contém algumas coisas. Pois bem, cada caixa é um nivel). Ha de se ter cuidado para
nao “derrubar” esta pilha ou como se diz em programagao, estourar a pilha (vai que dentro de uma
pilha vocé colocou dinamite.).

15 registradores na meméria RAM: para controle do PIC e de tudo o que estiver conectado com
ele, também chamado de “periféricos”.

Timer: de 8 bits que pode ter sua contagem (um timer conta a passagem de tempo) através de um
divisor chamado de “prescaler’ (se vocé conhece o funcionamento de um PLL isto é facil).

13 — 1/O: treze pinos que podem ser configurados, definidos como entrada ou saida e isto
individualmente.

Pode usar varios tipos de osciladores.
Pode entrar em modo Sleep (dormindo, mas atento).

Capacidade suficiente de corrente em suas saidas para acender os leds e controlar o corte e a
saturacao de transistores.

Pode gerenciar interrupgodes (interrupgdo é um comando interno ou externo, que manda o PIC ir
para um enderego especifico do programa, fazer o que estiver la e depois voltar).

Pode ter o seu programa protegido de forma a evitar que “alguém” copie o seu programa.

Tem também um Watch dog isto seria, se traduzindo, um cdo de guarda com um relégio que esta
de olho nos horarios e tempos do PIC. (Como se ja ndo bastava, o cartdo de ponto, o controle de
acesso por RFID e os chefes chatos que, gracas a Deus eu nunca tive Mas chega de falar
bobagem).

O Watch dog € um contador independente de tudo dentro do PIC, que reseta o0 mesmo, apds um
certo periodo. Para que serve isto? Digamos que vocé fez um projeto com um PIC para controlar
um elevador, dando ha um pico de tensé@o o PIC travou fazendo com que o elevador pare. Depois
de um curto periodo o Watch dog reseta o PIC, o programa volta a funcionar e o elevador volta a
funcionar também.

Ha de saber como se travar bem este cao, mas isto €, literalmente, outro capitulo.



5.5. Resumo:

A memoria de programa pode ter 12, 14 ou 16 bits, dependendo do PIC. Nesta meméria é que
escrevemos nossos programas. No PIC 16F84 ela tem 14 bits e a esses 14 bits damos o nome de
“Word” (palavra). Com 14 bits e 1K de espago o niumero maximo de bits que conseguiremos
armazenar, sera de 2" que ¢ igual a 16.384 bits.

A memoéria de programa é Flash e nao volétil, ou seja, ndo se apaga quando desligamos o
aparelho.

A meméria de dados é formada por 8 bits, que recebem o nome de “byte”. Todo os dados (aquele
cubo com pontinhos?) armazenados nela se perdem quando a alimentacdo é desligada. E é ela
guem define de quantos bits &€ o microcontrolador, como ele tem 8 bits o PIC 16F84 é de 8 bits.
Vocé nao acredita que os dados se apagam quando vocé desliga o circuito?

Ta bom, entdo faca um programa onde vocé possa gravar uma senha (mas sem usar a EEPROM
seu espetinho ou espertinha) e usa-la depois para comandar uma das saidas do PIC. Grave a
senha, teste se ela funciona. Desligue o PIC e tente uséa-la novamente.

Mas, vocé néo sabe fazer um programa?

Isto € s6 uma questao de tempo ou como eu costumo dizer, de quilometragem.

Procure ler todos os livros que dizem respeito ao PIC e programagéo.

5.6. Observacao Interessante:

Para saber quantas instrugées cabem na memoria de programa, devemos conhecer o tamanho da
memoria de programa. Sera? Veremos. Lembre-se que a memdria de programa é de 2 elevado a
14. Dois, pois, estamos trabalhando em binario, 0 e 1 e 14, pois este é o tamanho, em bits, de
cada posicado. Desta forma teremos:

2'* = 16.384
16.384 + 14 =1.170
Podemos ter na meméria de programa 1.170 instru¢des. Da um “programao’.

Vimos no comeco deste capitulo que eu chamei o PIC de PIC 16F84-04, mas por qué? Vamos ver
em partes:

Alguns temas estao meios confusos? (No problem, don't worry, by happy). Sem, problemas vamos
voltar a falar sobre eles.

Capitulo 6
PIC 16F628-04

Este capitulo devera ser mais curto do que o anterior, mas vamos |3, a vida é uma agradavel
surpresa (basta saber olhar para o lado certo).

2K de memoria para instrucoes de 14 bits. Lembre-se que esta memdria é Flash (ndo é um Flash,
portanto ndo facam pose). Sao 2,048 posigdes, da para perceber que podemos gravar um
programa maior nele do que no 16F84.

128 bytes de memaria EEPROM (o processo asmatico de ensino alerta: 1 byte é constituido de 8
bits).

224 bytes de RAM para que vocé encha de variaveis.



Um Stack (nédo de frango) ou pilha com 8 niveis. Nao se preocupe que vocé tera um capitulo sé
de Stack para ler.

15 1/0 ou 15 pinos que vocé pode configurar como entrada ou saida a seu bel prazer, se vocé
conhecer bem os registradores TRISA e TRISB e, tenha certeza, vocé conhecera.

1 pino s6 de entrada.

Timer contador com 8 bits.
Timer contador com 16 bits.
Timer contador com 16 bits.

Teoricamente quanto maior o niumero de bits de um timer maior a contagem que vocé podera
fazer.

Uma aplicacdo PWM que permite captura e amostragem. Veja o pino CCP1.

S6 para lembrar PWM quer dizer modulagdo por largura de pulso, com este recurso vocé
conseguira variar o brilho de uma lampada ou até fazer uma fonte chaveada (leiam o meu livro de
fontes chaveadas publicado pela Antenna).

Um Timer de 8 Bits.
Uma USART serial, mas o que é isto?

E um recurso que permitird que vocé converse com outros equipamentos, como uma porta serial
de um microcomputador.

USART significa “Universal Synchronous Asynchrous Receiver transmiter ou Transmissor’
Universal Sincrono ou Assincrono.

2 comparadores analogicos com referéncia interna, programavel, de tensdo. Quem gosta de
amplificadores operacionais prepare-se para se divertir, que ndo as conhece vamos ler o apéndice
sobre “AOs”.

O famoso Watch dog.
10 possibilidades de interrupgéo.

Um set de 35 instrugdes, ou seja, um grupo de 35 instrugbes. Com elas vocé trabalhara com os
PICs citados até agora.

Cada pino de I/0 com capacidade de fornecer ou consumir 25maA.
Vamos agora estudar este PIC pino a pino.

Pino 1 — Ra2 — port A, bit 2 — I/O:
- AN2 — entrada analdgica 2 para os comparadores;
- Vref — saida de tenséo de referéncia (muito util quando trabalhamos com AQOS).

Pino 2 — Ra2 — port A, bit 3 - I/O:
- AN3 — entrada analdgica 3 para os comparadores;
- CMP1 — saida do comparador 1.

Pino 3 — Ra4 — port A, bit 4 1/0:
- CMP2 — saida do comparador 2;



- TOCKI — entrada do comparador TMRO (vulgo timer0).

Pino 4 — Ra5 — port A, bit 5 - I/O:
- MCLR — Reset ou Mosfet Clear externo. Caso vocé deixe este pino no terra ele nao funcionard,
portanto ele deve sempre estar em Vcc.

- Vpp — Esta é a entrada para a tensao de programacao que deve ser de 13Vcc sem ripple.
Pino 5 — GND ou terra, também pode ser chamado de “Vss”.

Pino 6 — Rb0 — port B, bit 0 — I/0:
- INT — entrada para interrupgéo.

Pino 7 — Rb1 — port B, bit 1 — I/O:
- RX —pino de recepgédo da comunicagéo serial assincrona (USART);
- DT — pino de dados para comunicagéo serial sincrona (USART).

Pino 8 — Rb2 — port 2 - I/O:
- TX — pino para comunicagao, transmissao, assincrona (USART);
- CK — clock que permite a comunicagéao serial sincrona (USART).

Sem saber nada de comunicagbes serial, mas apenas por observagao, podemos perceber que:

- a comunicacao serial precisa de dois pinos;

- ela pode ser sincrona (de sincronizado, transmissor e receptor fazendo as coisas ao mesmo
tempo ou em sincronismo);

- ela pode ser assincrona (“me perdoem os experts” sem sincronismo entre o Tx e o Rx).

Se for sincrona, o pino 7 sera DT e transmitird e recebera dados, e o pino 8 sera o CK que
mantera o sincronismo entre Tx e Rx.

Se for assincrona, o pino 7 sera o Rx que recebera os dados e o pino 8 serd o Tx que enviara os
dados.

Pino 9 — Rb3 — port B, bit 3 — I/O:
- CCP1 — pino para o capture, compare e PWM (ndo tem nada a ver com a extinta Unido
Soviética).

Pino 10 — Rb4 — port B, bit 4 — 1/O:
- PGM — usado para programagao com baixa tensao que corresponde a 5 Vcc.

Pino 11 — Rb5 — port B, bit 5 — I/O:
- € s0.

Pino 12 — Rb6 — port B, bit 6 — I/O:

- T1050 — saida para xtal ou cristal externo;

- T1CK/ - entrada do contador TMR1 (vulgo timer1);

- PGC — usado para programagao serial (ICSF). Usado como clock.

Pino 13 — Rb7 — port 7, bit 7 — 1/O:
- T10SI — entrada para xtal ou cristal;
- PGD - entrada de dados da programacao serial (ICSP).

Pino 14 — Vcc — alimentagao positiva e sem ripple (na duvida coloque um capacitor de 100nF x
250Vcce no seu circuito).



10

Pino 15 — Ra6 — port A, bit 6 — I/O:

- OSC2 - saida para oscilador a cristal;

- CLKOUT - teremos também neste pino a possibilidade de ler, usar ou, retirar a freqiéncia de
sinal, que entra em OSC1, corresponde aos ciclos de maquina interno (veremos estes ciclos de
maquina um pouquinho mais adiante).

Pino 16 — Ra7 — port A, bit 7 — 1/O:

OSC1 — entrada do oscilador onde, normalmente eu aconselho se ligar um dos pinos do cristal a
outro terminal do cristal, vai no pino 15.

- CLKIN — aqui pode ser ligado um oscilador externo desde um formado por uma constante RC até
um VCO ou coisa parecida.

Pino 17 — Ra0 — port A, bit 0 — I/O:
- ANO — entrada anal6gica zero para os comparadores.

Pino 18 — Ra1 — port A, bit 1 — 1/O:
- AN1 — entrada analdgica 1 para os comparadores.

Podemos perceber que cada pino tem mais de uma fung¢ao, entdo de acordo com 0 nosso software
e de como “setamos” ou ajustamos os registradores, um pino pode fazer uma fung¢édo ou outra.
Fique atento a isto, veja um exemplo:

O pino 18 pode tanto ser um I/O da porta, como a entrada para um dos comparadores.

Vamos analisar o nome de dois PICs, o 16F628-04 ¢ 0 16F628-20.

Capitulo 7
TIPOS DE OSCILADORES

Um microcontrolador precisa de um sinal de clock para funcionar e o responsavel por gerar este
sinal e o oscilador.

Nos PICs 16F84 e 16F628 os pinos que correspondem ao oscilador sdo os pinos 15 e 16.

O pino 15 é normalmente a saida e o pino 16 ¢ a entrada. Mas, antes de continuarmos com isto,
eu pergunto:

O que vem a ser Clock?

Na pratica um clock é um sinal de onda quadrada que serve para fazer um circuito l6gico funcionar
ou para sincronizar diversos dispositivos ou circuitos.

Quando vocé vé a configuragdo de um microcomputador € ele tem um processador.

P4 de 2,8GHz

Quer dizer que o clock do processador tem uma freqiiéncia de 2,8 GHertz ou 2.800 MHz.

O nivel alto do clock deve corresponder a tensdo de alimentagéo do PIC (+Vcc) e o nivel baixo
deve corresponder ao terra.

O periodo alto (+Vcc) € chamado de “Ton” e o periodo baixo de “Toff".

E interessante que estes dois periodos sejam iguais. A soma dos dois periodos resulta em “T” que
€ o periodo total da onda quadrada e pelo qual podemos definir qual é a freqiiéncia ou vice-versa.
T=Ton + ToFF

T= ou F=

==



11

Ao usarmos um cristal de 4MHz teremos uma frequéncia de 4MHz e o periodo de:

T = 1 = 250ns ou 250 nano segundos

=I% 4.000,000

Ou 0,000. 000.25 segundos.

Agora que ja conhecemos o clock, vamos falar sobre ciclo de maquina.
7.1. Ciclo de Maquina:

O microcontrolador PIC pega o sinal de clock e o divide internamente por 4. Disto resultam
quatro periodos que receberdo o nome de: “Q7, Q2, Q3 e Q4”, cada periodo destes “Qs” sera igual
ao periodo do clock externo, ou seja, 250ns.

Podemos também dizer que o clock de 4MHz ¢ igual a freqiiéncia de 1 MHz.

Veja:

Clock interno = Clock externo = 4MHz = 1MHz
4 4

O periodo do clock interno sera:

T=1 = 1

F 1MHz

T = 1us ou 1 micro segundo ou 0,000. 001 segundos.

Para executarmos uma instrucdo, o PIC precisa passar por Q1, Q2, Q3 e Q4, portanto, uma
instrugdo demora para ser executada, estes 4 tempos somados:

Q1 + Q2 + Q3 + Q4 = 250ns + 250ns + 250ns + 250ns = 1us
Vemos, entdo que cada instru¢do demora 1us para ser executada.
A forma mais facil de sabermos o tempo que uma instrucdo leva para ser executada é pegar a

freqiiéncia do cristal ou oscilador externo, dividir por 4 e calcular seu periodo.

FreqUéncia da instrucédo = freqiiéncia do xtal
4

Freqiiéncia da instrugéo = 4MHz = 1MHz
4

Tempo ou periodo para executar a instrugdo = _ 1 = 1us
1MHz

O PIC usa um recurso chamado de “Pipeline”, que faz com que em um ciclo maquina ele busque a
instrucao e em outro ele a execute.

Resumindo, o ciclo de maquina é o nome das 4 fases Q1, Q2, Q3 e Q4, e cada instrucao é
executada em um ciclo, pois, enquanto uma é executada outra ao mesmo tempo € buscada na
memoria.

Isto € uma caracteristica da estrutura Harvard que permite o pipeline de uma forma féacil.



12

Vocé pode estar pensando que todas as instrugdes, usando um cristal de 4MHz, demorarao 1us
para serem executados, mas, instrugées que geram “saltos” dentro do programa gostam mais de
1us, pois precisam de dois ciclos de maquina. Gastarao, entéo, 2us.

Vocé também pode estar pensando que 1us é um “tempo muito pequeno’, mas, se vocé for
construir, por exemplo, um gerador de barras para monitor ou TV, com um ciclo de maquina de
1us podera ter problemas. O que fazer entdo? Usar um PIC 16F628-20, por exemplo. Com um
cristal de 20 MHz teremos o periodo de execugao de cada instrugao.

FreqUéncia da instrugdo = 20MHz = 5MHz
4
Periodo para executar a instrugdo = _ 1 = 200ns
5MHz

ou 200 nano segundos ou 0,000. 000.2 segundos.

Desta forma ficou muito mais rapido. Vocé nao acha?

Agora que ja vimos osciladores, clocks e ciclos de maquinas vamos ver os tipos de osciladores que
estes PICs aceitam.

XT — cristal ou ressonador com freqiiéncia maior do que 200 kHz e que v& até 4MHz.

HS — cristal ou ressonador com freqiiéncia acima de 4Mhz. Neste caso a freqiiéncia maxima sera
definida pelo PIC.

LS — cristal ou ressonador com freqiiéncia abaixo de 200 khz. Pausa: vocé sabia que existem
cristais que oscilam em 15 khz?

RC_CLKOUT - oscilador RC externo que deve estar ligado no pino 16. No pino 15 teremos este
sinal dividido por 4.

RC_I/O — Oscilador externo mais que usa o pino 15 como I/O. Neste caso ndo teremos no pino 15
Fo + 4, pois ou ele faz uma coisa ou outra. Isto s6 é valido para o PIC 16F28 (*relativo ao PICs que
estamos estudando neste livro).

INTOSC_I/O — oscilador interno com o pino 15 operando como I/O (*sé é valido para o 16F28).
EC_1/O — usado com clock externo e pino 15 funcionando como I/O (*valido para 16F628).

RC — usando um circuito RC externo (# valido para 16F84).

LP — usando cristal de frequéncia abaixo de 200 kHz (# vélido para 16F84).

Estes tipos de osciladores recebem estes nomes, pois, € com eles que vamos trabalhar ao
fazermos nosso software ou ao configurarmos o MPLAB para a gravagao. Observe que algumas

opcdes servem para os dois PIC estudados e outra apenas para alguns deles. Para facilitar vemos:

* = valido para PIC 16F628 no nosso estudo.
# = valido para PIC 16F84 no nosso estudo.

Reescrever:

PIC 16F84 — osciladores: XT



13

LP
HS
RC

PIC 16F628 — osciladores: XT
LS
HS
RC_CLKOUT
RC _I/O
INTOSC_I/O
INTOSC_CLKOUT
EC _I/O

Normalmente eu uso na pratica ou no hardware, como queiram, cristais de 4 MHz com capacitores
de 15pF. Caso vocé use capacitores acima de 33pF com um cristal de 4 MHz o oscilador podera
nédo funcionar adequadamente (0 valor da XC sera muito baixo e atenuard muito as oscilagbées do
cristal).

Com cristais de 20 MHz eu uso capacitores de 15pF e nunca tive problemas. Na hora de comprar
0s capacitores opte por capacitores de disco cerdmicos ou capacitores plate.

Nao va fazer um software e um hardware que use um cristal de 20 MHz e na hora de gravar o PIC
usar opcao XT que é para cristais de até 4 MHz. Se vocé fizer isto, ndo aparecera erro na
gravagao, mas, o seu circuito hora funciona, hora ndo. Eu sei disto na pratica pois também erro.

Nunca confunda a hardware com o software, quando falamos no componente cristal de 4 MHz ou
de 20 MHz no capacitor ceramico ou plate, estamos nos referindo ao hardware, a placa de
circuito, ao cheiro da solda, a bancada.

Quando nos referimos a XT, LP, RC_I/O, entre outros, estamos nos referindo ao software. Mas,
especificamente ao comando ou diretriz que devemos incluir no software para que o projeto
funcione.

Na pratica, se usarmos no nosso hardware, um componente chamado de cristal, com freqiéncia
de 4 MHz, feito de cristal, envolto por metal e com dois terminais, devemos usar XT no nosso
software.

Dica:

Fazer experiéncias com uma placa padréo ja pronta € muito mais facil que desenvolver o software
e a hardware para uma determinada aplicagdo. Estudar eletrébnica é muito importante e, como
disse anteriormente, ler bons livros de eletrénica, é realmente muito importante em nossa area. Ao
menos leiam todos os apéndices existentes neste livro.

Capitulo 8
O WATCH DOG

Como eu ja havia dito anteriormente neste livro, o watch dog é um timer ou temporizador
independente do clock do PIC ou de qualquer outro componente externo.

Ele sempre esta contando e o seu tempo total de contagem € de, aproximadamente, 18ms.

Este tempo pode variar de acordo com a temperatura e flutuagdo na alimentacéo (olha o ripple
novamente). Mas, o importante é saber que quando o tempo de contagem excede 18ms, ele
estoura (dai vocé vé uma pequena fumacga subindo da bancada), ou melhor, dizendo, ocorre um
overflow e ele reseta o PIC e assim o programa comegca tudo de novo.



14

A funcédo dele é evitar que algum travamento no programa, causado por hardware ou software,
seja resolvido depois de um reset do microcontrolador.

Imagine um dimmer (controlador de intensidade Iluminosa) constituido com um PIC. Em
determinado momento um pico de energia faz com que a luz, que estava bem fraquinha, fique com
o seu brilho maximo devido ha um “travamento” do PIC. O watch dog “reseta’ ele e o brilho volta
ao normal se 0 seu programa foi feito para isto.

Isto apenas € um exemplo, imagine a importancia do watch dog em sistemas ligados a seguranca.
Mas, meus programas vao ficar limitados a rodarem em 18ms? E claro que ndo. Basta vocé usar a
instru¢do CLRWDT, e o registrador WDT, que faz a contagem da watch dog, seré resetado e ndo
acontecera o overflow nem o reset do PIC. Mas, se o0 seu programa travar, ele ndo passara por
esta instrucado e o overflow acontecera.

A instrucdo CLRWDT € extremamente util quando precisamos criar sub-rotinas de tempo,
traduzindo para o portugués correto, ela é importante se pretendermos fazer um timer com o PIC.
O watch dog pode ser ligado ou desligado, ou melhor, dizendo, pode ser ativado ou desativado
em apenas duas condicoes:

- com uma linha de comando no cabegalho do programa;
- na hora da gravacgéao do PIC.

Se vocé usar a instrucado sleep (acorda o meu filho ou filha) e se acontecer um estouro, o
microcontrolador retornara na instrugéo seguinte ao sleep.

Vocé pode associar o watch dog ao prescaler, que é um divisor ajustavel, e aumentar o periodo
dele para até 2,2 segundos aproximadamente (ndo tenho cronémetro).

Vamos estudar o prescaler daqui a pouco. Agora vamos salientar que apenas duas instrucdes
zeram o watch dog e fazem com que ele recomece a contar.

As fungbes sao:
SLEEP = zera o watch dog e coloca o PIC em modo econémico.

CLRWDT = zera o watch dog evitando o overflow ou estouro e o reset do PIC.

Capitulo 9
O PRESCALER

Antes de tudo o prescaler € um divisor. No caso dos PICs € um divisor que pode ter o seu fator de
divisdo ajustado.

O prescaler que é um divisor pode ser atribuido, ou seja, pode estar conectado ao TMRO (timer 0)
ou ao watch dog. Para definirmos isto precisamos atribuir um valor ao bit 3 ou flag 3 do
registrador Option.

Se o valor do bit 3 for 1 a prescaler estara ligado e dividindo a contagem do watch dog.
Se for 0 o prescaler sera atribuido ao TMRO.

Podemos perceber a importancia dos registradores, vamos estuda-los mais profundamente em um
proximo capitulo. Tudo ao seu tempo.



15

O bit 0, o bit 1 e o bit 2 do registrador Option definem a taxa de divisdo do prescaler. Ja aviso
gue esta taxa é diferente para a watch dog e para o TMRO.

Estes bits tem nomes préprios, vamos vé-los:

O bit 3 recebe 0 nome de PSA.
O bit 0 tem o nome de PSO.
O bit 1 tem o nome de PS1.
O bit 2 tem o0 nome de PS2.

Vocé pode ler ou escrever o valor nestes flags do registrador Option.

Podemos perceber que de acordo com os valores nas posi¢des PS2, PS1 e PS0, teremos um fator
de divisdo.

Também podemos perceber que a maxima divisdo do Timer0 sera por 256, e a maxima diviséo do
watch dog sera por 128.

Nas nossas experiéncias iremos “ver’ estas divisdes na pratica.

Capitulo 10
STACK

O stack consiste em uma pilha com oito posicoes diferentes. Também podemos dizer que ele
tem oito niveis diferentes. O stack nesta familia de PICs néo é acessivel ao programador.

Sua fungao é armazenar a posicdo em que o programa parou ou foi desviado, para executar uma
sub-rotina e fazer o programa voltar para a posicao imediatamente seguinte, apos realizar a sub-
rotina.

Ele trabalha junto com o PC que é o programa Counter ou Contador de Programa.

Basicamente falando o PC conta as linhas do programa que estdo sendo executadas e seu
funcionamento é praticamente transparente ao usuario ou ao programador.

Toda vez que uma instrugao Call é usada, o PC armazena o valor PC+1 na Stack, isto para saber
em qual linha do programa deve voltar.

A mesma coisa acontece quando usamos interrupgoes.

Como temos apenas 8 niveis, ndo podemos ter mais de 8 instrugdes de desvio acontecendo ao
mesmo tempo, pois as chamadas acima da oitava serdo armazenadas sobre as outras e ai o
programa nao sabera para onde ir.

Os oitos niveis no Stack sao montados da seguinte forma:

- nivel 8 = 82 chamada call.
- nivel 7 = 72 chamada call.
- nivel 6 = 62 chamada call.
- nivel 5 = 52 chamada call.
- nivel 4 = 42 chamada call.
- nivel 3 = 32 chamada call.
- nivel 2 = 22 chamada call.
- nivel 1 = 12 chamada call.

- terminada a 82 chamada este espaco ficara vago.
- terminada a 72 chamada este espaco ficara vago e assim, sucessivamente.

A pilha € montada de baixo para cima e desmontada de cima para baixo.



16

Como na série 16 dos microcontroladores PIC ndo podemos ver o estado da pilha, é muito
importante prestar atencdo em quantas chamadas se esta usando. Caso o Stack esteja cheio e
uma chamada seja feita, o nivel 1 ja era, ou melhor, o endereco que estava no nivel 1 ja era, e 0
seu programa também.

O PC nao voltara para o lugar correto ao chegar ao nivel 1.

As Unicas instru¢des que tem acesso a pilha sdo Call, Return, Retlw e Retfie além da interrupcéo.
Um Call e uma interrupcao guardam enderecos de retorno no Stack.

A instrucao “GOTO’ ndo armazena endereco no Stack.

Se vocé for usar interrupgbes em seu programa, considere a pilha com apenas 7 niveis, pois se
nao fizer isto e acontecer uma interrupgdo com os 8 niveis ocupados, havera um estouro da pilha
€ 0 seu programa nao funcionara.

Usou interrupgéao, deixe um nivel vazio no Stack.

Capitulo 11
OPC

O PC, sigla para “Program Counter’, ou contador de programa e é o responsavel pela seqiéncia
exata da execugdo das instrugées dos programas. Quando temos uma instrucao Call ou uma
interrupcéo, ele “fica mais importante”. Veja no exemplo a seguir:

1 —instrucédo 1;

2 —instrucéo 2;

3 —instrucéo 3;

4 — Call XX -> instrucdo 4 = nesta hora o valor PC+1 é armazenado no Stack, ou seja, a instrugao
4 + 1, que é igual a 5 serd armazenada no Stack e quando terminar a sub-rotina, chamada de XX,
a instrugao return saberd, gracas ao PC e ao Stack que devera voltar para a posicao 5.

5 —instrucéo 5;

6 — instrucéo 6;

7 —instrucéo 7.

Capitulo 12
O REGISTRADOR W

O registrador W é extremamente Gtil no PIC, pois é através dele que fazemos diversas partes de
um programa.

O nome registrador W vem de “Registrador Work”, que traduzindo, quer dizer trabalho.

E através dele que carregamos os outros registradores com valores diversos e corretoss para um
perfeito funcionamento de nosso projeto.

Caso desejamos colocar um determinado valor em um registrador de uso geral (GPR), primeiro
temos que “carregar’ o registrador W e depois passar para o outro registrador.

Para carregarmos o registrador W usamos as instrugées:

MOVWF e MOVLW.



17

Capitulo 13
CATEGORIA DE REGISTRADORES

Os microcontroladores PICs possuem dois tipos de registradores, além dos registradores W, estes
registradores sdo chamados de “GPR e SFR’, e normalmente, sdo indicados pela letra f
(mindsculo).

Ao contrario do registrador W, eles estdo implementados dentro da memdria RAM. As siglas
significam o seguinte:

GPR = General Purpose Register = Registrador de Propésito Geral (mais facil -> Registrador de
Uso Geral).

SFR = Special Function Register = Registrador para Func¢des Especiais.
f = file register = Registrador de Arquivo.
Normalmente se usa “f’ tanto para identificar registros “SFR” como “GPR".

Um registro é um endereco de meméria, que pode receber um nome.
Como os microcontroladores usados sao de 8 bits o registro pode ter um valor entre 0 a 255 em
decimal (28 = 255) ou de 0000 0000 a 1111 1111 em binario ou de 0 a FFH em hexadecimal.

No caso do PIC 16F84 ou do 16F628, este registro tem que estar em uma posicao da memoéria
entre 0 a 127 em decimal ou 0000 0000 a 0111 1111 em binario ou 0 & 7FH em hexadecimal.

Temos um espago na memoria RAM, de uso geral, que vai de 12 a 79 em decimal ou OCH a 4FH
em hexadecimal o que nos deixa um espaco de 68 bytes para o PIC 16F84 no banco 0 espelhado
no banco 1.

Temos um espago de memaéria RAM, de uso geral, que vai de 32 a 128 no banco 0 o que da 96
bytes, temos um espaco de 160 a 240 no banco 1 o que da 80 bytes e de 288 a 335 no banco 2,
0 que da 47 bytes para o PIC 16F628. Temos assim o valor de 96 + 80 + 47 bytes disponiveis no
PIC 16F628.

Importante: Um registrador € um endere¢o na memoria RAM.

O ideal é darmos um nome a este registrador. Todo registrador pode assumir um valor entre 0 a
255 em decimal.

Também ¢é importante perceber que podemos definir um endere¢o ou uma variavel em decimal,
binario ou hexadecimal, exemplo:

128 em decimal é igual a 10000000, em binario que € igual as 80H.
O mais comum para nés é o decimal, porém quando desejamos alterar ou ajustar o valor de uma

ou mais flags em uma registrador de 8 bits o0 mais facil é usar o binario.

Em binério fica mais facil visualizarmos o estado de cada bit, por exemplo, vocé saberia como
estariam os bits se coloca-se
no “INTCON’ o valor 154 em decimal?



18

Podemos escrever nosso programa usando como base numérica o decimal, o octal, o binario ou o
hexadecimal. Mas, precisamos avisar o microcontrolador em qual base vamos trabalhar.

O numero méaximo de registradores de um microcontrolador ira depender do tipo de
microcontrolador.

Cabe lembrar que teremos os registradores SFR que definirdo as caracteristicas de
funcionamento do microcontrolador (como exemplo podemos citar o INTCON, o TRISA, o
STATUS) e os GPR que sao registradores de uso geral e normalmente “criados” pelo programador.
No caso do PIC 16F84 estes registradores de uso geral se limitam a 15.

Capitulo 14 ,
DECIMAL / HEXADECIMAL / BINARIO

No capitulo anterior vimos duas coisas raras e importantes. Uma delas é a base numérica e a outra
sd0 os bancos de memdria.

Neste capitulo estudaremos as bases numéricas. No proximo capitulo estudaremos os bancos da
praca. Melhor dizendo, os bancos de memoria.

Vamos estudar algumas conversdes (a direita e a esquerda, sempre com o uso da seta).
O resultado em decimal é a somatdria deles todos.

1F9H =9 + (15 x 16) + (1 x 256)
1F9H = 9 + 240 + 256
1F9H = 505 em decimal.

Mas, e para transformarmos decimal em hexadecimal como faremos? Existem algumas formas, se
vocé tiver uma calculadora cientifica, com esta funcéo, por exemplo, é bico. Mas, deixando a graca
de lado, vamos ver uma forma simples:

Pegue o valor em decimal e divida por 16.

Transforme a parte inteira do resultado em hexadecimal.
Pegue a parte fracionada e multiplique por 16.

Junte as duas partes e ta ai o resultado em hexadecimal.

Qo
Qo
Qo
Q

~ ~— ~— ~—

1
2
3
4
Exemplos:

O valor 254 em decimal corresponde a quanto em hexadecimal?
19) 254/ 16 = 15,875

2915=F

3% (16x0,875)=14=E

4°) 254 decimal = FEH

O valor 255 em decimal corresponde a quanto em hexadecimal?



19

19) 255 / 16 = 15,9375

2915=F

39 (16 x 0,9375) =15 =F = junte os dois, F com F
4°) 255 em decimal = FFH

Quanto vale 18 em hexa?

19918 / 16 =1,125

29) 1 =1

39 (16 x0,125) =2 = junte os dois, 1 com 2
4°) 18 = 12H

Caso o resultado do lado esquerdo da virgula (parte interna) seja maior do que 16 sera necessario
dividir esta parte por 16 novamente.

Veja os exemplos a seguir:
300 /16=18,75 = (16x0,75)=12=C
300/16=1,125 = (16x0,125) =2
"

Juntando os trés temos 12CH.
Portanto 300 em decimal corresponde a 12 CH em hexadecimal.

Exemplo:
505 /16 = 31,5625 = (16 x 0,5625) =9
31 /16=1,9375 = (16x0,9375)=15=F
"

Juntando as trés partes teremos o nimero 1F9H.
Portanto 505 em decimal corresponde a 1F9 em hexadecimal.

Exemplo:

1000 /16=625 = (16x0,5)=8

62 /16=38,875= (16x0,875)=14=E

3
Juntando os trés nimeros na duracdo indicada pela seta teremos o nimero 3E8 em hexadecimal
ou 3E8H que corresponde a 1000 em decimal.

Exemplo:



20

4096 /16 =256,0 = (16x0) =0
256 /16 =16,0 = (16 x0) =0

16 /16=1,0 = (16x0)=0

]

4096 em decimal é igual a 1000H em hexadecimal. Veja por este exemplo, que quanto o resultado
€ apenas inteiro (sem parte apdés a virgula) o nimero 16 deve ser multiplicado por 0.

Exemplo:
4095 /16 =255,9375 = (16x0,9375)=15=F
255 /16 =159375 = (16 x0,9375)=15=F
15=F

4095 em decimal é igual a FFFH.

Agora chega de exemplos, a finalidade de tanto é fazer vocé perceber uma légica entre estas
conversodes e ver que com uma calculadora comum tudo isto € muito facil.

Agora vamos ver como passar de binario para decimal e vice-versa. Vimos que em decimal a base
€ 10 em hexadecimal a base € 16 e em binario a base serd 2.

No cabegalho de um programa com um PIC teremos uma diretriz que indicara com que base o
programa trabalhard, esta diretriz recebe 0 nome de radix.

Uma forma simples de perceber a relagéo entre decimal e binario é através do uso de uma tabela,
que pode receber o0 nome da tabela da verdade.

Como a base do binario é 2 s6 teremos dois digitos, o zero (0) e o um (7) e todos os numeros
serdo representados por um conjunto de “zeros” e “uns

Vamos fazer a tabela da verdade e falar um pouco sobre ela. Mas, antes vamos perceber o
seguinte:

2° - 1 = dois elevado a zero é igual a um;

2' = 2 = dois elevado a um é igual a dois;

2° = 4 = dois elevado a dois é igual a quatro;

2% - 8 = dois elevado a trés é igual a oito;

2*= 16 = dois elevado a quatro é igual a dezesseis;
2° = 32 = dois elevado a cinco é igual a trinta e dois;

Usando esta tabela, podemos transformar qualquer nimero entre 0 a 16 em decimal em binario,
temos que perceber o seguinte: para encontrarmos o valor em decimal de um nimero em binario,
devemos elevar a base 2 a potencia correspondente e multiplicar por 1 ou 0 dependendo da
posicao do numero e/ou valor em binario.

Exemplo:



21

100100 ¢é igual a quanto em decimal.

O resultado é igual a 32 + 4 = 36 em decimal. Mas, no caso dos registradores dos PICs estudados
poderemos ter um numero de 8 bits ou 1 byte, como calcular:

O resultado é: 128 + 64 + 8 + 4 = 204 em decimal.

Podemos perceber que todo nimero é mudltiplo de dois. Também é bom lembrar que qualquer

nuamero elevado a zero é igual a 1.

O resultado é igual a 145 em decimal.
Podemos perceber que ndo € necessario se multiplicar os numeros por 0 (zero).
E importante saber qual o resultado do valor de 2 elevado a “x” (2"), onde “x” é um nimero que
corresponde a posicao do digito. Lembre-se de que o primeiro “x” sera “0".
Se quisermos colocar em uma porta o valor 32 em decimal, basta carregar na mesma o valor
10000 em binario, ou melhor, como a porta pode ter 8 bits (lembre-se em consideragédo a port B), 0
ndmero seria assim:
00010000
Para convertermos um ndmero decimal em bindario precisamos dividir este nimero por 2. Devemos
fazer isto até o resultado ser fracionério. Enquanto isto, ndo acontece, devemos pressupor que a
parte fracionaria € “0’ e multiplicar 2 por 0. Quando houver uma parte fracionaria, devemos
multiplicar por 2, veja:
Exemplo:
8 em binario é igual a:

8/ 2=4= (2x0)=0

4 /2=2= (2x0)=0

2/2=1= (2x0)=0

1
8 em decimal = 1000 em binario.
Exemplo:

17 / 2=285 = (2x0,5) =1

8 /2=4 = (2x0)=0

2 /2=2= (2x0)=0

2 /2=1= (2x0)=0

1

10001 em binario = 17 em decimal.



22

Exemplo:
255/ 2=1275 = (2x0,5) =1
127 / 2=63,5 = (2x0,5) =1
63 /2=315 = (2x0,5) =1
31 /2=155= (2x0,5) =1
35 /2=75 = (2x0,5) =1
7 /2=35= (2x0,5) =1
3 /2=15= (2x0,5) =1
1

1111111 em binario = 255 em decimal

Quando a parte inteira da divisdo € igual a 1 (ou menor do que 2) terminaram as divises e este 1
fard parte do conjunto.

Resumo:
- decimal = base decimal composta de 10 digitos de 0 a 9.
- hexadecimal = base hexadecimal composta de 16 digitos de 0 a F.

- binario = base binaria composta por 2 digitos de 0 a 1.

Capitulo15
BANCOS DE MEMORIA DE DADOS E CONTROLE DO PIC 16F84

Sera que isto € um velho banco de praga, onde um velho homem se senta para lembrar o
passado? Acho que néo.

Chamamos de banco de meméria de controle, um espago na meméria RAM que é reservado para
os registros para fungdes especiais, como o Option, Status, Intcon, Trisa, Trisb e etc. Este
espaco recebe o nome de “memdria de controle”, pois 0s registros que ocupam estas posicoes
controlam o funcionamento e a comunicacao do PIC.

Junto com o banco de meméria de controle ha um espago de meméria de dados. E neste espaco
gue colocaremos as nossas “variaveis’.

No PIC 16F84 existem 2 bancos de memoéria e no PIC 16F28 existem 4 bancos. Muitos
registradores especiais estdo presentes em mais de um banco. Isto pode parecer estranho, se
repetir uma mesma informagédo (um registrador guarda uma informagcdo) em dois ou mais
enderecos diferentes, mas, isto pode ajudar na programagao.

Podemos perceber que existem registradores que estdo no banco 0, registradores que estédo no
banco 1 e registradores que estdo nos dois bancos. Muitas vezes precisamos, em um programa,



23

mudar de banco para pegar uma informacao que estd em outro banco. O banco onde normalmente
0 “PIC deve estar’ quando um programa € rodado € o banco 0.

A memoria RAM usada para se gravar variaveis, vai do endere¢o 12 em decimal até 79 em
decimal o que da um espago de 68 bits. Mas, e o0 espaco do banco 1?

Como esta escrito este espaco € um espelho do espacgo correspondente no banco 0, ou seja, uma
informacao caso estiver na posicao 12 em decimal do banco 0, também estara na posicao 140
em decimal do banco 1.

Indicamos os enderecos da memaria em hexadecimal (xxH), em decimal (xxd) e em binario (xxb)
para que vocé va se acostumando com estas trés formas de numeragcdo que sdo comuns em
circuitos digitais micro-controlados.

E importante lembrar, que esta meméria guarda dados de 8 bits por endereco ou 1 byte por
endereco.

Também ¢é importante lembrar, que ela esta dividida em bancos devido a construgao interna do
PIC.

Todos os valores nestes bancos estdo armazenados em memdria RAM, ou seja, se a alimentagao
for cortada, estes dados se perderéo.

Para mudar de um banco para outro, usaremos flags em registradores especiais, convém lembrar
que algumas pessoas podem chamar estes flags de “chaves’.

Capitulo 16
MEMORIA DE PROGRAMA DO PIC 16F84

A memoéria de programa pode ter 12,14 ou 16 bits, dependendo do PIC. Nesta memdéria é que
escreveremaos 0s programas.

No PIC 16F84, ela tem 14 bits, ou seja, cada endereco da memoria de programa pode ter até 14
bits. A esses 14 bits damos o nome de “Worad” (Palavra).

Com 14 bits o nimero maximo de bits sera igual ha: 2'* = 16.384 bits, ou seja, teremos 16.384
combinacdes diferentes de bits.

A memdéria de programa, normalmente em PICs reagravaveis, é FLASH e ndo perde as
informacdes quando a alimentagé@o é cortada. Caso contrario perderiamos o programa cada vez
gue desligassemos 0 nosso circuito.

Caso vocé ache que ja leu isto em alguma outra parte deste livro, ndo ache, tenha certeza. Vamos
repetir para decorar, mas, sem stress, apenas de uma forma natural.

E bom lembrar que o “F’ do PIC 16F84 quer dizer que na meméria de programa deste PIC é Flash
ou EE-FLASH.

Capitulo 17
BANCOS DE MEMORIAS DE DADOS E CONTROLE DO PIC 16F628

Neste PIC teremos 4 bancos e memorias ao invés dos 2 bancos do PIC 16F84.

Teremos nele os bancos:
- banco 0.
- banco 1.
- banco 2.



24

- banco 3.
Caso vocé ja nao tenha percebido, em digital, tudo comega com 0 (zero).

Chamamos de banco de memdria de controle um espago na memoria RAM que é reservado para
0s registradores para as fungdes especiais, como o Option, Status, Intcon, Trisa, Trisb, Cmcon,
Vrcon, etc. Este PIC possui mais registradores que o 16F84. Isto se deve ao fato de que ele possui
mais recursos que a 16F84. Temos dentro dele dois comparadores que podem ser utilizados em
diversas configuracbes e permite associar uma variacdo analégica de uma tensdo ao
processamento digital feito pelo PIC.

No 16F628 existem 4 bancos de memodria, e que estes bancos guardam informacdes de 8 bits, ou
um byte, em cada posi¢éo.

Olhando os 4 bancos de meméria (do banco 0 ao banco 3) podemos perceber que existem
registradores que estdo em um banco, outras que estdo mais de um banco. Devido a posicao dos
registradores nos bancos, durante um programa, as vezes, precisamos mudar de banco para
acessar determinado registrador.

Um PIC normalmente trabalha no banco 0 (zero), caso ele precise ler ou escrever algum bit ou flag,
de algum registrador em algum outro banco ele deve ir ler ou escrever e voltar para o banco 0
(zero). Mas, ele nao faz isto sozinho. Vocé que é o programador, é quem faz.

Neste PIC temos 96 bytes de memaria no banco 0 (zero), para usarmos com nossas variaveis.
Temos também, mais 80 bytes no banco 1 e 48 bytes no banco 2.

No total teremos 224 bytes de memdéria para nossas variaveis.

Eu aconselho, pelo menos ao comegar a programar, utilizar somente a meméria do banco 0 (zero).
Lembre-se que um byte é composto de 8 bits.

A memoria é dividida em bancos devido a construgao interna do PIC.

Capitulo 18
MEMORIA DE PROGRAMA DO PIC 16F628

A meméria de programa do PIC 16F628 é de 2K Words ou 2.048 posi¢des de 14 bits. O PIC 16F84
tem uma capacidade de 1K ou 1.024 posicoes de 14 bits. Podemos perceber que com o 16F628
podemos fazer programas maiores.

Toda esta memoria € FLASH ou EE-FLASH.

Programas maiores acontecerdo com certeza quando vocé ler o meu préximo livro sobre PICs. La
vocé aprendera a programar em C e vera que um programa em C, normalmente ocupa mais
espaco. Mas, primeiro vamos escovar 0s bits em Assembler...

Lembre-se que a meméria FLASH néo perde os dados quando a alimentacao é cortada.

Perceba que com o 16F628 vocé terd 2.048 posigdes para colocar uma combinagdo de numeros

em binario, 0 e 1. Perceba também que vocé tera 2 elevado a 14 combinagdes diferentes em
binario, ou seja, 16.384 possibilidades de 0 e 1 para colocar em 2.048 enderecos.

Capitulo 19



25

UM “GERALZAO” SOBRE MEMORIA DE PROGRAMA

Basicamente memoria de programa é o local onde vocé estara gravando o seu programa. Por
programa vocé pode chamar o conjunto de instrugbes em Assembler ou seu algoritmo como
algumas pessoas gostam de dizer.

Observe que seu programa nao consistira apenas das instru¢des, mas, também de variaveis,
dados e acessos a registradores. Se vocé ndo ficar atento, poderd nem perceber isto tudo, mas, é
assim que funciona.

Capitulo 20 ,
UMA “GERALZAO” SOBRE MEMORIA DE DADOS

Como ja deu para perceber o “geralzao” ndo é tdo grande assim, é apenas uma forma de enfatizar
alguns conceitos.

Vamos la: Na memoria de dados vocé colocard suas variaveis. Estas varidveis normalmente
receberdao nomes dados por vocé e ocupardo um determinado enderego. Este recurso facilitara
muito a construgao de um programa, pois toda vez que vocé precisar daquele variavel é sé chama-
la pelo nome.

Na memoria de dados também ficam os registradores de controle.

Capitulo 21

REGISTRADORES ESPECIAIS E MAIS UTILIZADOS NO PIC 16F84
E PIC 16F628

21.1. Registrador STATUS:

Este registrador esta diretamente associado a unidade logica Aritmética, ou a ja famosa “ULA”.
Através dele conseguimos ver o estado da ULA. Gostaria de relembrar que um registrador € um
endere¢co na memoria de dados, composta por 8 bits e que cada bit deste recebe o nome
carinhoso de flag.

Perceba meu amigo leitor que de 7 até 0 teremos 8 posigdes, portanto 8 bits.

R/W quer dizer Read e Write - Leitura e escrita que tem suas versdes em portugués para L/E.
Entdo:

L/E quer dizer leitura e escrita. Um bit indicado por R/W ou L/E permite que vocé faca a leitura de
seu valor ou que escreva um valor nesta posicao. Lembre-se que vocé s6 podera escrever 0 (zero)

ou1 (um).

Um bit ou flag indicado por R permite apenas a leitura, mas nao a escrita. Com a analise destes
bits podemos fazer nossos programas ficarem mais rapidos e eficientes.

Podemos ler ou escrever em um registrador bit a bit ou tudo de uma vez. Em minha opinido a
andlise separada de cada bit € mais eficaz.

Vamos ver o que cada bit representa:



26

Bit 7 - IRP — este flag seleciona o banco de dados usado para enderecamento indireto (calma...).
Se o seu valor for 0 (zero) estaremos usando os bancos 0 (zero) e 1 (um).

Se o seu valor for 1 estaremos usando os bancos 2 e 3.

Como o 16F84 s6 tem os bancos 0 e 1, devemos manter este bit sempre em 0 (zero).

Permite a leitura e escrita.

Bit7=0-—> bancos O e 1.

Bit7=1—> bancos 2 e 3.

Bit 6 — RP1 — este tem a fungdo de selecionar os bancos no enderegamento direto.
Podemos perceber que ele trabalha junto com o Bit 5:

Bit 5 — RP0O —> seleciona os bancos no enderegamento direto.

Veja:

RP1 RPO:

0 0 =banco 0
0 1 = banco 1
1 0 = banco 2
1 1 = banco 3

podemos perceber que temos 4 combinagdes em binério o que nos permite selecionar 4 bancos.
Como no 16F84 sé temos dois bancos, o 0 (zero) e o 1 (um), devemos manter RP1 sempre em 0
(zero), desta forma nossa tabela fica assim:

RP1 RPO

0 0 =banco 0
0 1 = banco 1
0 0 =banco 0
0 1 = banco 1

S6 temos duas combinagdes e podemos acessar os dois bancos do 16F84, o banco 0 e o banco 1.
Estes dois Flags sdo R/W, ou seja, permitem a escrita ou leitura.

Bit 4 - /TO ou TO\ —> este bit informa que ocorreu um time-out.

Mas, o que ¢ isto?

Isto significa que houve um estouro no tempo de contagem do Watch-dog ou que o Watch-dog ja
contou até onde consegue e resetou o PIC. Lembre-se que o Watch-dog conta separadamente de
tudo e que se vocé ndo quer que o tempo de contagem estoure e o seu PIC seja resetado, deve
apagar sempre o valor na Watch-dog. Para que isto ndo aconteca, use a instrucdo Clrwdt em seu
programa, principalmente dentro de Loops.

Seu estado serd 0 (zero) quando acorrer um estouro do Watch-dog.
Seu estado serd 1 quando vocé ligar o PIC, mandar o PIC fazer a instrugdo Clrwdtou Sleep.

/TO = 0 —> estouro de Watch-dog seu programa foi resetado e voltara ao comego (muitas vezes,
por causa disto, um programa nao funcionara).

/T =1 —> vocé usou as instrugbes Sleep, Clrwdt ou ligou o circuito. Ligar o circuito também é
chamado de Power-up.

Este flag € R, ou seja, sé permite que seja feita sua leitura.

Bit 3 - /PD ou PD\ —> este bit se chama Power-down, mas, ndo quer dizer que vocé desligou o
PIC. Mas ele serve para ver se vocé executou uma instrugédo Sleep ou Clrwdt.



27

/PD =1 —> vocé executou uma instrugao Clrwdt.
/PD = 0 —> vocé mandou o PIC dormir executando uma instrucao Sleep.

Este bit sé permite a leitura, entdo ele é R.

Bit 2 — Z —> a fungao deste flag é sinalizar o 0 (zero). Com este bit podemos simplificar nossos
programas e conferir resultados de instrucoes.

Z = 0 —> mostra que o resultado da Ultima operagdo matematica ou légica nao foi igual a 0 (zero).
Z =1 —> demonstra que o resultado da Ultima operacao logica ou aritmética foi igual a 0 (zero).

Durante um programa, ou seja, quando ele estiver rodando, este flag assumira valores de 1 ¢ 0
muitas vezes, dependendo do programa € claro.

2 + 2 é uma operacao matematica ou aritmética.
0 and 1 é uma operacao logica.
Este bit e R/W, ou seja, permite escrita e leitura.
Bit 1 — DC —> 0 nome deste bit é Digit Carry/Borrow. Traduzindo quer dizer que seu valor se

altera quando ocorreu a passagem de um bit da posi¢ao 3 para a posicao 4.

DC = 0 —> nao houve um carry-out.
DC = 1 — houve carry-out de 3° para 4° bit ou de P3 para P4.

Este Flag é R/W.

Bit 0 — C —> este bit se chama Carry/Borrow e ele indica que ocorreu um carry-out da posigcao P7
o do bit 7 para a posi¢ao P8. veja que ndo ha posicao P8. Dizemos, quando isto acontece, que
houve um estouro, pois s6 temos as posigdes de PO a P7, ou seja, 8 bits e esta situagao ultrapassa

este 8 bits

C = 0 — ndo houve um carry-out e esta tudo normal.
C =1 — houve um carry-out do bit 7 para o bit 8 (nona posigéo). Veja a figura 21.1 anterior.

Este flag permite a leitura e a escrita, portanto, é R/W.

Depois de um reset o registrador STATUS estara assim:

- Ajustado para banco 0 de meméria.

-TO\=1;

-PD\=1.

Outros bits estardo em estado desconhecido.

Este registrador € muito importante e tem seu lugar garantido no cabecgalho do programa. Mais
para frente, vocé vera que podera utilizar um cabecgalho padrdo para fazer os seus programas
(com poucas modificagdes, as vezes).

Vocé pode usar este registro fora do cabegalho do seu programa, mas, deve chama-lo sempre por

seu nome, ou seja, STATUS.
A mesma regra se aplica para os outros registradores especiais, salvo raras excegoes.



28

21.2. Registrador OPTION ou OPTION-REG:

Como o nome diz, este registrador permite se escolher uma série de opgbdes do microcontrolador.
E através dele que configuramos o prescaler, o TMRO, como sera aceita uma interrupgao externa,
como ficaréo as pull-ups do Portb entre outras coisas.

Ele normalmente é chamado de “Option-Reg", pois existem PICs com uma instru¢do chamada
Option e se colocassemos sé o nome Option, nosso programa poderia apresentar problemas.

R/W é igual a L/E o quer dizer que estes flags permitem leitura e escrita.

Vocé vera que no cabecalho de qualquer programa ira ter que configurar este registrador.

Vamos ver qual a fung¢éo de cada flag ou bit deste registrador.

Bit 7 — RBPU\ — este Flag define como estédo os resistores de pull-ups do Portb.

Bit 7 = 0 = pull-ups habilitados.
Bit 7 = 1 = pull-ups desabilitados.

Mas, o que vem a ser pull-ups?

O pull-up é um resistor que é colocado entre um pino do portb e o Vcc internamente.

Mas, como esta ligagéo € interna ndo podemos vé-la, mas, podemos configura-los.
Fica assim entdo:

Bit 7 = 0 = resistores ligados ao Vcc — configurados como entrdas.
Bit 7 = 1 = resistores dos ligados da Vcc — configurados como saidas.

Ele aceita leitura e escrita.

Bit 6 — INTEDG -> Este flag define como sera aceita uma interrupgdo externa. Se quando o nivel
subir ou se quando o nivel descer no pino RbO/INT.

Este flag aceita leitura e escrita.

Bit 6 = 0 = a interrupcao é entendida quando o pino esta em nivel alto (Vcc) e desce (terra).

Bit 6 = 1 = a interrup¢éo é entendida quando o pino esta em nivel baixo (terra) e vai para nivel alto
(Vcece).

Bit 5— TOCS -> Este bit ou Flag define a fonte de clock do timerO.

“Vocé verd alguns softwares neste livro e na Internet, que demonstram o funcionamento do timer
0”.

Bit 5 = 0 = o timer 0 conta através do clock interno. Normalmente usamos esta opgéo.
Bit 5 = 1 = o timer 0 conta através das mudangas de nivel ou clock no pino Ra4/TOCKI.



29
Bit 4 — TOSE -> Define se o timer0 sera incrementado na subida do sinal ou na descida do sinal
aplicado em Ra4/TOCKI.

Bit 4 = 0 = conta quando o sinal passa de 0 para Vcc, ou seja, sobe.
Bit 4 = 1 = conta quando o sinal passa de Vcc para 0, ou seja, desce.

Bit 3 — PSA -> Este Flag define com quem o prescaler estara ligado, internamente, no PIC.
Mas, o que € um Prescaler?

Se vocé ja trabalhou com RF deve conhecer o famoso PLL, se ndo conhece, acesse o site
www.luizbertini.net/dowload.html e “abaixe” a apostila de PLL, e sabera que, muitas vezes ele

trabalha em conjunto com um divisor que é o famoso Prescaler.

Um Prescaler é um divisor que pode ser fixo ou ndo. Normalmente um Prescaler é utilizado para se
dividir uma freqiéncia e a forma de onda desta freqiiéncia deve ser quadrada.

Nos PICs o valor de divisdo dos Prescaler podem ser alterados, mas, tudo dentro de certos
padrdes.

Os flags responsaveis pela configuragéo do Prescaler sdo o PS2, PS1 e PSO0. E eles s&o os bits ou
flags bit2, bit1 e bit0.

Todos eles permitem leitura e escrita.

Veja seus nomes e posicoes:

Bit 2 — PS2 — bit mais significativo.

Bit 1 — PS1 — bit “do meio”.

Bit 0 — PSO0 — bit menos significativo.

Com os trés podemos manter uma tabela com oito possibilidades.

Teoricamente eles seguem a divisdo de acordo com esta tabela. Perceba que o timer 0 comecga
dividindo por 2.

Depois de um reset este registrador estaratodoem 1 (11111 11 1), na seguinte configuragao:
RBPU\=1 = pull-ups desabilitados.

INTEDG = 1 = interrup¢éo na subida.

TOCS = 1 = clock pelo Ra4.

TOSE = 1 = incrementa o clock na descida.

PSA =1 = prescaler com o Watch-dog.

PS2 = PS1 = PSO = 1 = divisdo de Watch-dog por 128.

Veja que é importante saber o estado ap0ds o reset e reconfigura-lo se necessario.

21.3. Registrador INTCON:

A funcg@o basica deste registrador € controlar as interrup¢des. Uma interrup¢éo € um comando
elétrico que pode ser externo ou interno e que obriga o microcontrolador a ir para um determinado



30

endereco da memaria. Em programas simples poucas vezes usamos interrupgdes, mas, em
programas elaborados elas sdo fundamentais.

O registrador tem 8 bits ou 8 flags.
R/W = L/E = que quer dizer que eles permitem leitura e escrita.

As configuracbes destes registradores permitirdo definir como o microcontrolador trabalhara com
as interrupgoes.

Conhecendo flag a flag o registrador INTCON.
Bit 7 — GIE —> este bit habilita ou desabilita todas as interrupgdes.

Caso a chave Ch1 esteja aberta, ndo importa a posigéo das chaves Ch2 a Ch6, que néo circulara
corrente (1) entre as pontas (A) e (B). E esta a fungéo do GIE, mais ou menos.

Bit 7 = 0 = todas as interrup¢des desabilitadas, nenhuma interrupgao externa ou interna atua sobre
o PIC.
Bit 7 = 1 = permite que as interrupgdes funcionem de acordo com sua “setagem” ou programacao.

Bit 6 — EEIE -> gera uma interrupgéo no final da escrita do EEPROM ou E2PROM interna.
Bit 6 = 0 = ndo tem interrupgao apds acabar a escrita.
Bit 6 = 1 = tem interrupgcéo apds acabar a escrita.

Fique esperto com este flag, pois vocé podera ndo conseguir fazer um programa que grave no
E2PROM funcionar, devido ao “detalhe” de se esquecer que, caso haja uma interrup¢éo o PIC vai
para outro endereco da meméria. No PIC 16F628, ele recebe o nome de PEIE e monitora todos os
periféricos (atencao).

Bit 5 — TOIE —> interrupg&o gerada por estouro ou overflow do TMRO ou timer0. Esta € uma
interrupg&o, ou no caso do nosso circuito, uma chave individual.

Bit 5 = 0 = interrupg&o habilitada, tem um estouro no timer0, tem uma interrupgéo.
Bit 5 = 1 = interrupgéo desabilitada.

Bit 4 — INTE —> controle ou flag de controle da interrupgao externa no pino RbO/INT.

Bit 4 = 0 = esta desabilitada.
Bit 4 = 1 = est4 habilitada.

Bit 3 — RBIE —> controla interrup¢des por mudangas no Portb.

Se estiver habilitada qualquer mudancga de estado no portb sera interpretada como uma
interrupcéo. Sé da Rb4 ao Rb7.

Bit 3 = 0 = ndo entende mudang¢a no portb como interrupgéo.
Bit 3 = 1 = entende mudanca no portb como interrupgéo.

Bit 2 — TOIF —> este Flag indica que houve uma interrupg¢ao no timer0 por estouro ou overflow.
Bit 2 = 0 = ndo ocorreu estouro e por isto ndo houve interrupcao.

Bit 2 = 1 = ocorreu estouro e por isto ocorreu o sinal de interrupgédo, mas, ele sé sera reconhecido
se 0 bit 5 deixar.



31
Quando ficar em 1, vocé deve zerar este flag através de seu software, caso contrario, ele sempre
ficara igual a 1.
Bit 1 — INTF — indica que ocorreu uma interrupgéo externa através do pino RbO/INT.

Bit 1 = 0 = ndo existe nenhum pedido e interrupgéo.
Bit 1 = 1 = ocorreu pedido e interrupgéo.

Este flag também deve ser “zerado” pelo seu software.
Bit 0 — RBIF —> indica mudancas do portb e interrupcao do portb da Rb4 ao Rb7.

Bit 0 = 0 = ndo houve mudanga de estado em nenhum pino do portb do Rb4 ao Rb7.
Bit 0 = 1 = houve mudancgas de nivel de tensdo em algum pino da portb do pino Rb4 ao Rb7.

Este bit também deve ser “zerado” pelo seu software.

Da para perceber que este registrador sé cuida das interrupgdes. Quando acontece um reset ele
fica assim:

Bit 7: Bit 0
0 0 0 0 0 0 0 X

Todas as interrupgdes desabilitadas e o bit 0 ndo é afetado, mantém o estado que tinha antes do
reset. Se era 1 fica 1 e se era 0 fica 0.

Existem muitos outros registradores, mas os conheceremos depois. Calma gente, somos s6
aprendizes de feiticeiros...

Capitulo 22
REGISTRADORES ESPECIAIS E UTILIZADOS NO PIC 16F628

Além do registrador STATUS e do OPTION ou OPTION_REG que séo iguais ao da 16F84, vamos
estar vendo aqui outros registradores ndo usados no 16F84.

Lembre-se, cada PIC pode ter registradores diferentes, o importante é saber o conceito. Releia o
capitulo de registradores.

Vamos ver primeiro o INTCON.

Ele é responsavel pelas interrupgbes, mas, como o PIC 16F628 tem EEPROM interna,
comparadores internos e uma porta USART de comunicacgéo serial o bit 6, que no 16F84, era
associada a EEPROM, neste registrador estéd associado ha todos os dispositivos citados (é€ como
uma chave geral) e teremos mais dois registradores para controlar as interrup¢des originadas
deles. Sdo o PIE1 e o PIR1.

GIE: Habilitagcdo geral das interrupgdes.
0 = Nenhuma interrupcao sera tratada.
1 = As interrupgdes habilitadas individualmente serdo tratadas.



PEIE: Habilitagédo das interrup¢des de periféricos.
0 = As interrupcgdes de periféricos nao serado tratadas.
1 = As interrupgdes de periféricos habilitadas individualmente seréo tratadas.

TOIE: Habilitagao da interrupg¢éo de estouro de TMRO.
0 = Interrupg¢édo de TMRO desabilitada.
1 = Interrupc&o de TMRO habilitada.

INTE: Habilitagdo de interrupgéo externa no pino RbO.
0 = Interrupcao externa desabilitada.
1 = Interrupgéo externa habilitada.

RBIE: Habilitagdo da interrupgdo por mudanga de estado nos pinos Rb4 a Rb7.
0 = Interrup¢éo por mudanga de estado desabilitada.
1 = Interrupg@o por mudanca de estado habilitada.

TOIF: Identificacdo de estouro do TMRO:
0 = N&o ocorreu estouro do TMRO.
1 = Ocorreu estouro do TMRO (este bit deve ser limpo por vocé via software).

RBIF: Identificacdo da interrup¢cdo por mudanca de estado nos pinos Rb4 a Rb7.
0 = N&o ocorreu evento da interrupgao.
1 = Ocorreu evento da interrupgéo (este bit também deve ser limpo por voce).

Agora vamos nos concentrar no bit 6 que é o PEIE e que a faz a diferencga entre o PIC16F84 e o

PIC 16F628.

Bit 6 — PEIE —> responsével pelas interrup¢des dos periféricos.

Por periféricos chamamos a E2PROM, os comparadores a USART e os timers.

Este flag € a “chave geral” mais teremos mais dois registradores para dividir entre eles as
interrupgdes dos periféricos.

O registrador PIE1 permite a habilitagcdo e desabilitacdo das interrupgdes dos periféricos.

O registrador PIR1 é o sinalizador das interrup¢des dos periféricos. Ele sempre sinalizara se

houver uma interrupgéo.
Tenha claro isto:

PIE1 —> habilitagao.
PIR1 —> sinalizagdo.

Vamos ver o PIE1:

Bit 7 — EEIE —> interrupcao do final da escrita EEPROM.
Bit 7 = 0 = ndo habilitada.

Bit 7 = 1 = habilitada.

Bit 6 — CCIE —> interrupgao dos comparadores.

Bit 6 = 0 = ndo habilitada.

Bit 6 = 1 = habilitada.

Bit 5 — RCIE —> interrupgao da USART.

32



33

“USART” quer dizer: Universal Sincrono Assincrono "Rx e TX” — Vulgo comunicagao serial.

Bit 5 = 0 = ndo habilitada.
Bit 5 = 1 = habilitada.

Bit 4 — TXIE —> agora este flag habilita a transmisséo (Tx) da USART.
Bit 4 = 0 = interrupgéo desabilitada.
Bit 4 = 1 = interrupgéo habilitada.

Bit 3 — Unused (n&o utilizada).

Bit 2 — CCP1IE —> este Flag habilita a interrupgdo do CCP (Captura/Comparag¢éao/PWM).
Bit 2 = 0 = desabilitada.
Bit 2 = 1 = habilitada.

Bit 1 — TMR2IE —> habilitacao da interrupcéao de estouro do timer 2 (este PIC tem o timer0, o timer1
e o timer2).

Bit 1 = 0 = ndo habilitada.

Bit 1 = 1 = habilitada.

Bit 0 — TMR1IE —> habilitacédo da interrupgéo do estouro do timer 1 do PIC 16F628X.
Bit 0 = 0 = ndo habilitada.
Bit 0 = 1 = habilitada.

Apds o reset fica:

Bit7 Bité Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

0 0 0 0 0 0 0 0

Agora o PIR1:

L/E = permitem a leitura e escrita. Mas, o Bit 5 e o Bit 4 precisam para isto, de outros SFRs
(registradores). Este registrador indica o que esta acontecendo com os periféricos do PIC
16F628/PIC 16F627 e permite a vocé acessa-lo com seu software, e fazer um programa ou
“algoritmo” mais “legal” ou objetivo.

Sempre a indicacao é feita pelo digito 1.

Bit 7 — EEIF —> sinaliza o término de escrita na EEPROM (vocé pode usa-lo para
comandar/controlar uma escrita na EEPROM quando fizer um programa), lembre-se disto.

Bit 7 = 0 = escrita nao terminou ou nem comecou.
Bit 7 = 1 = escrita terminou.

Bit 6 — CMIF —> sinaliza mudanca de estado nas saidas dos comparadores analégicos do PIC
16F62X.

Bit 6 = 0 = ndo houve mudanca na saida.
Bit 6 = 1 = teve mudanca de nivel na saida.

Bit 5 — RCIF — indica a recepg¢éao de caractere na USART.

Bit 5 = 0 = sem recepc¢éo.
Bit 5 =1 = com recepc¢éo.



Bit 4 — TXIF —> sinaliza transmissio da USART.

Bit 4 = 0 = sem transmisséao.
Bit 4 = 1 = com transmisséao.

Bit 3 — Unused (nao utilizada)

Bit 2 — CCP1IF —> sinalizagao de captura ou de comparagao.

Bit 2 = 0 = sem captura ou comparacao.
Bit 2 = 1 = com captura ou comparacao.

Bit 1 — TMR2IF —> indica estouro no timer2.

Bit 1 = 0 = sem estouro.
Bit 1 = 1 = com estouro “bum”.

Bit 0 — TMR1IF —> indica estouro no timer 1.

Bit 0 = 0 = ndo houve estouro.
Bit 0 = 1 = houve estouro.

Vamos ver, de novo, o STATUS:

IRP:

RP1 e
RPO

/TO:

/PD:

DC:

Seletor de banco de memoria de dados usado para enderegamento indireto:
0 =Banco 0 e 1 (00h — FFh).
1 =Banco 2 e 3 (100h — 1FFh).

Seletor de banco de meméria de dados usado para enderecamento direto:
00 = Banco 0 (00h — 7Fh).

01 = banco 1 (80h — FFh).

10 = Banco 2 (100h — 17Fh).

11 = banco 3 (180h — 1FFh).

Indicagéo de Time-out:

0 = indica que ocorreu um estouro do Watch-dog Timer (WDT).

1 = indica que ocorreu um power-up ou foram executadas as instrugées CLRWDT ou
SLEEP.

Indicacao/Power-down:
0 = indica que a instrugdo SLEEP foi executada.
1 = indica que ocorreu um power-up ou foi executada a instrugdo CLRWDT.

Indicag&o de zero:

34

0 = indica que o resultado da ultima operacéo (légica ou aritmética) nao resultou em zero.

1 = indica que p resultado da ultima operacao (Idgica ou aritmética) resultou em zero.

Digit Carry/Borrow:
0 = A ultima operacao da ULA néo ocasionou um estouro de digito.



35

1 = A Ultima operagédo da ULA ocasionou um estouro (carry) entre o bit 3 e 4, isto é, o
resultado ultrapassou os 4 bits menos significativos. Utilizado quando se trabalha com
numeros de 4 bits.

C: Carry/Borrow:
0 = A ultima operacao da ULA néo ocasionou um estouro (carry).
1 = A ultima operacao da ULA ocasionou um estouro (carry) no bit mais significativo, isto &,
o resultado ultrapassou os 8 bits disponiveis.

Vamos ver, de novo, o OPTION:

/RBPU: Habilita pull-ups internos para o PORTB:
0 = Pull-ups habilitados para todos os pinos do PORTB configurados como saida.
1 = Pull-ups desabilitados.

INTEDG: Configuragéo da borda que gerard a interrupgéo externa no RBO:
0 = A interrupgao ocorrera na borda de descida.
1 = A interrupgdo ocorrera na borda de subida.

TOCS: Configuragéao do incremento para o TMRO:
0 = TMRO sera incrementado internamente pelo clock da maquina.
1 = TMRO sera incrementado externamente pela mudancga no pino RA4/TOCK1.

TOSE: Configura¢do da borda que incrementard o TMRO no pino RA4/TOCK1, quando TOCs = 1:
0 = O incremento ocorrera na borda de subida de RA4/TOCK1.
1 = O incremento ocorrera na borda de descida de RA4/TOCK1.

PSA: Configuracédo de aplicacao do prescaler:
0 = O prescaler sera aplicado ao TMRO.
1 = O prescaler sera aplicado ao WDT.

PS2, PS1

e PS0: Configuragao de valor de prescaler.
PS2/1/0 TMRO EDT
000 1:2 1:1
001 1:4 1:2
010 1:8 1:4
011 1:16 1:8
100 1:32 1:16
101 1:64 1:32
110 1:128 1:64
111 1:256 1:128

Agora o Pcon que indica a queda de energia, o tipo de oscilador interno e a falta de energia.
PCON:

OSCF: Frequéncia do oscilador interno:
0 =4 MHz.
1 =37 KHz.

/POR: Indicagdo de Power-On Reset (energizagao):
0 = Ocorreu um Power-On Reset.
1 = Nao ocorreu um Power-On Reset.

/BOR: Indicagao de Brown-Out Reset (queda de energia):



0 = Nao ocorreu um Brown-Out Reset.
1 = Ocorreu um Brown-Out Reset.

Vamos ver o Pcl e o Pclath que trabalham diretamente com o PC Counter.
PCL e PCLATH:

Para enderecamentos indiretos precisamos deles.
FSR e o INDF:

Comandando o Porta.
PORTA e TRISA:

Comandando o Portb.
PORTB e TRISB:

Verificando o timer0.
TMRO:

Trabalhando com o prescaler, clock interno ou externo, e timer1.
T1CON, TMR1L e TMR1H:

T1CKPS1
T1CKPSO:

Ajuste do prescaler do Timer1:
00 = prescaler de 1:1.
01 = prescaler de 1:2.
10 = prescaler de 1:4.
11 = prescaler de 1:8.

T10SCEN: Habilitagao do sistema de oscilagéao externa para os pinos T10OSO e T10SI:

0 = Oscilador desabilitado. Caso exista um cristal externo, o sistema € desligado.

1 = Habilita oscilador externo.

/T1ISYNC: Controle de sincronismo interno. Quando TMR1CS = 0 este bit é ignorado:
0 = Sistema de sincronismo ligado.
1 = Sistema de sincronismo desligado (modo assincrono).

TMR1CS: Selecao da origem do clock para Timer 1:
0 = Clock interno (Fosc/4).
1 = Clock externo no pino T10OSO/T1CK1.

TMR10ON: Habilitagéo do Timer 1:

0 = Timer1 desabilitado. Paralisa o contador do Timer1.
1 = Timer1 habilitado.

Trabalhando com o timer2, com o prescaler e com o postcaler.
T2CON, TMR2 e PR2:

TOUTPS3

36



TOUTPS2
TOUTPS1

TOUTPSO:

TMR20N:

T2CKPS1

T2CKPSO:

Ajuste do postscale:

0000 = postscaler de 1:1.
0001 = postscaler de 1:2.
0010 = postscaler de 1:3.
0011 = postscaler de 1:4.
0100 = postscaler de 1:5.
0101 = postscaler de 1:6.
0110 = postscaler de 1:7.
0111 = postscaler de 1:8.

1000 = postscaler de 1
1001 = postscaler de 1
1010 = postscaler de 1
1011 = postscaler de 1
1100 = postscaler de 1
1101 = postscaler de 1
1110 = postscaler de 1
1111 = postscaler de 1

Habilitacdo do Timer2:

9.

:10.
1.
12.
:113.
114,
:15.
:16.

0 = Timer2 desabilitado. Paralisa o contador do Timer2.

1 = Timer2 habilitado.

Ajuste do prescaler:
00 = prescaler de 1:1.
01 = prescaler de 1:4.
10 = prescaler de 1:16.
11 = prescaler de 1:16

Trabalhando com os comparadores internos.

CMCON:

C20UT:

CIOUT:

C2INV :

C1INV:

ClS:

Valor da saida do comparador 2:
Normal (C2INV=0):

0=0C2 V|N+ <C2 VIN-

1=C2 V|N+ >(C2 VIN-

Inversa (C2INV=1):

0=0C2 V|N+ >(C2 VIN-

1=C2 V|N+ <C2 V|N_

Valor da saida do comparador 1:
Normal (C1INV=0):

0=C1 V|N+ < C1 V|N_

1=C1 V|N+ > C1 V|N_

Inversa (1INV=1) :

0=Ct1 V|N+ > C1 VIN-

1=C1 V|N+ <C2 VIN-

Tipo de saida do comparador 2 :
0 = Normal.
1 = Inversa.

Tipo de saida do comparador 1:
0 = Normal.
1 = Inversa.

Chave seletora de entrada do comparador:

Quando CM2:CMO = 001
0 = RAO conectado a C1 V.
1 = RA3 conectado a C1 V),
Quando CM2:CMO0 = 010



38

0 = RAO conectado a C1 V.
RA1 conectado a C2 V |\,
1 = RA3 conectado a C1 V.
RAZ2 conectado a C2 V |\,

CM2, CM1
CMo: Configura a pinagem dos comparadores (modo de operagao):

Trabalhando com as tensdes de referencia.
VRCON:

VREN: Energizacdo do sistema de tenséo de referéncia:
0 = Circuito de Vger desenergizado.
1 = Circuito de Vggr energizado.

VRON: Habilitacdo da saida de Vggr:
0 = Tensao de referéncia desligada.
1 = Tens&o de referéncia ligada ao pino RA2.

VRR: Selecao do range de operacgéo do sistema de Vggr:
0 = Range baixo.
1 = Range alto.

VR3.VRO: Selecao do valor da tensao de Vggr:
SeVRR=1:
Vrer = (VR/24) * Vpp
Se VRR =0:
VREF =" VDD + (VR/32) *VDD

Capture, compare e PWM.
CCP1CON, CCPR1L e CCPR1H :

CCP1X

CCP1Y: Parte baixa do PWM de 10 bits. A parte alta fica em CCPR1L. Valido somente
quando em PWM.

CCP1M3

CCP1M2

CCP1M1

CCP1MO: Selecao do modo CCP1 — Compare/Capture/PWW:

0000 = Modo desligado.

0100 = Capture ligado para borda de descida com prescaler de 1:1.

0101 = Capture ligado para borda de subida com prescaler de 1:1.

0110 = Capture ligado para borda de subida com prescaler de 1:4.

0111 = Capture ligado para borda de subida com prescaler de 1:16.

1000 = Compare ligado. Pino de saida (RB3) sera setado (1) quando o compare
ocorrer.

1001 = Compare ligado. Pino de saida (RB3) serd zerado (0) quando o compare
ocorrer.

1010 = Compare ligado. Pino de saida (RB3) ndo sera afetado.

1011 = Compare ligado. Pino de saida (RB3) ndo sera afetado. TMR1 sera
resetado.

1100 = PWM ligado.

1101 = PWM ligado.



39

1110 = PWM ligado.
1111 = PWM ligado.

Falando da eeprom interna.
EECON1, EECON2, EEADR e EEDATA:

WRERR:

WREN:

WR:

RD:

Identificacdo de erro durante a escrita na EEPROM:
0 = N&o ocorreu erro, a escrita foi completada.
1 = Em erro ocorreu por uma escrita ndo terminada (um reset pode ter ocorrido).

Habilitagao de escrita na EEPROM (bit de segurancga):
0 = Nao habilita a escrita na EEPROM.
1 = Habilita a escrita na EEPROM.

Ciclo de escrita na EEPROM:

0 = Este bit sera zerado pelo hardware quando o ciclo de escrita terminar (néo
pode ser zerado por software).

1 = Inicia o ciclo de escrita (deve ser setado por software).

Ciclo de leitura da EEPROM:

0 = Este bit sera zerado pelo hardware quando o ciclo de leitura terminar (ndo pode
ser zerado por software).

1 = Inicia o ciclo de leitura (deve ser setado por software).

Com eles conseguimos nos comunicar.
TXSTA e RCSTA:

CSRC:

TX9:

TXEN:

SYNC:

BRGH:

TRMT:

TX9D:

Selecao entre Master/Slave (somente modo sincrono):
0 = Slave.
1 = Master.

Habilitagdo da comunicagdo em 9 bits para a transmissao:
0 = Transmissao em 8 bits.
1 = Transmissdo em 9 bits.

Habilitacao da transmissao:

0 = Transmissao desabilitada.

1 = Transmissao habilitada. No modo sincrono, a recepgao tem prioridade sobre
este bit.

Selecao entre modo assincrono/sincrono:
0 = Assincrono.
1 = Sincrono.

Selecao para Baud Rate (somente modo assincrono):
0 = Baud Rate baixo.
1 = baud Rate alto.

Selecao do registrador interno de transmisséo (TSR):
0 = TSR cheio.
1 = TSR vazio.

Valor a ser transmitido como 92 bit. Pode ser usado como paridade ou
enderecamento.



40

SPEN: Habilitacdo da USART:
0 = USART desabilitada.
1 = USART habilitada.

RX9: Habilitagdo da comunicagdo em 9 bits para a recepgéo:
0 = Recepgao em 8 bits.
1 = recepgdo em 9 bits.

SREN: Habilitagao da recepc¢éao unitaria (somente para modo sincrono em Master):
0 = Recepcgao unitaria desabilitada.
1 = Recepgdo unitéria habilitada. Depois de receber um dado, desliga-se
automaticamente.

CREN: Habilitagao da recepg¢éo continua:

0 = Recepcgao continua desabilitada.
1 = Recepcao continua habilitada.

ADDEN: Habilitagao do sistema de enderegcamento (somente modo assincrono de 9 bits):
0 = Desabilita sistema de enderegamento.
1 = Habilita sistema de enderegamento.

FERR: Erro de Stop bit (somente modo assincrono):
0 = Nao ocorreu erro. Stop bit = 1
1 = Ocorreu um erro. Stop bit = 0 (deve ser atualizado lendo o registrador RCREG
e recebendo o préximo dado valido).

OERR: Erro de muitos bytes recebidos sem nenhuma leitura:
0 = N&o houve problemas de estouro do limite.
1 = Estouro do limite de 3 bytes recebidos antes da leitura de RCREG (para limpar
deve-se zerar o bit CREN).

RX9D: Valor recebido no 92 bit. Pode ser usado Omo paridade ou enderecamento.

Ainda nos comunicando.
TXREG e RCREG.

Ajustando a velocidade de comunicacao.
SPBRG.

CAPITULO 24 )
TEORIA DA GRAVAGCAO - MANUAL EXSTO

A Exsto cedeu gentilmente, uma placa Pratic628, para as simulagdes dos softwares escritos
e usados neste livro, por isto citamos aqui o manual desta placa, esperamos que vocé,
adquirindo-a, tenha o seu estudo e aprendizado muito mais completo.

Introducao:

Parabéns! Vocé acaba de adquirir um produto de alta qualidade e tecnologia de ponta. O Pratic
628 sera o grande auxilio no aprendizado e desenvolvimento com microcontroladores da linha
PICMicro da Microchip.

A Exsto Tecnologia é uma empresa situada em Santa Rita do Sapucai, Minas Gerais, conhecida
como “Vale da Eletrénica” por seu destaque na industria eletroeletrénica e pela exceléncia de suas



41

instituicbes de ensino. Nossa missdo € sempre fornecer as melhores ferramentas para o
desenvolvimento e aprendizado em eletrénica e, em especial, microcontroladores. Visite nosso site
www.exsto.com.br para conhecer outras solugdes e produtos oferecidos.

Este documento contém as principais caracteristicas do Sistema de desenvolvimento Pratic 628 e
visa ser o guia de instalacao e utilizacao desse sistema.

O Pratic 628 ¢ um ambiente de desenvolvimento composto por um hardware e software visa
facilitar o aprendizado e desenvolvimento com microcontroladores das linhas PIC 16Xxxx utilizando
especialmente o PIC16F628, além de maximizar as possibilidades de experimentos.

O software (em portugués) realiza basicamente as seguintes fungdes:

® Permite a edi¢cdo de programas;

® Compila/Monta os programas;

® Grava os programas compilados no microcontrolador presente na placa principal.

O hardware do Pratic 628 foi desenvolvido procurando disponibilizar o maximo de recursos
possiveis ao PIC16F628. Neste sentido, o kit contém diversos circuitos que séo ligados ao
microcontroladores através de jumpers, permitindo assim realizar um grande nimero de montagem
mesmo com um microcontrolador de poucas entradas e saidas.

A escolha do PIC16F628 se deve a popularidade desse componente, que agrega periféricos
avancados sem deixar de ser simples. Além disso, ele &€ compativel com o classico PIC16F84.

1. Componentes Suportados:
O Pratic 628, incluindo funcionalidades de hardware e software, suporta trabalhar com os
microcontroladores listados abaixo, todos eles compativeis pino a pino com o PIC16F628A.

PIC16F627 PIC16LF627A
PIC16F627A PIC16LF627A
PIC16F628 PIC16LF628

PIC16F628A PIC16LF628A
PIC16F648A PIC16LF648A

Além desses componentes, a Exsto Tecnologia esta em constante trabalho de atualizagdo do
software, criando novas versdes para trabalhar com 0s novos langamentos em microcontroladores
PIC suportados pela placa. Visite periodicamente o site www.exsto.com.br onde estéo disponiveis
as atualizacoes.

2. Software Pratic 628:

1) Componentes da janela principal:

Ao se abrir 0 programa tem-se a janela principal, como mostrada abaixo com o0s seguintes
componentes:

a) Menus: Arquivo, Editar, Ferramentas, Janelas:

Através dos diversos menus € possivel ter acesso ao todas as funcionalidades do sistema.
b) Barra de ferramentas:

As funcgdes principais localizam-se nesta barra, agilizando os seus acessos.
c) Barra de status:

i. Indica se as teclas, CAPS LOCK, INSERT e NUM estao acionadas ou nao;
ii. Infforma a linha do cursor na janela de edi¢éo;

iii. Informa o processador que esta sendo utilizado;

iv. Informa o compilador utilizado;

v. Mostra mensagens relativas a varios comandos;

vi. Mostra a hora atual do sistema.

2) Como criar um novo arquivo:

Para criar um novo arquivo siga os passos abaixo:
a) No menu escolha Arquivo-Novo, ou através da barra ferramentas;
b) Escolha um diret6rio onde deseja salvar o projeto;



42

) Digite o nome do arquivo;
d) No menu escolha Arquivo — Salvar Como, Salve o arquivo no diretério desejado;

) Em intervalos regulares de tempo, salve o projeto através do menu Projeto — Salvar, ou
através da barra de ferramentas &.

3) Abrindo um arquivo existente:

Para abrir um arquivo criado anteriormente, siga os passos abaixo:
a) No menu escolha Arquivo — Abrir, ou através da barra de ferramentas .
b) Navegue até a pasta onde se encontra o arquivo e abra o arquivo desejado.

4) Montando/Compilando arquivos:
Para montar um arquivo em Assembly ou compilar um arquivo em C, siga 0s passos abaixo:
a) Cligue na janela de edicao do arquivo que devera ser compilado;
b) No menu escolha Ferramentas — Compilar ou através da barra de ferramentasH, ou ainda
através da tecla de atalho F5;
¢) Uma janela de status do compilador aparecera indicando o andamento do processo de
compilacao do arquivo;
d) Ao final da compilagéo, aparecera a janela Resultados da Compilagdo, listando todos os
erros, mensagens e avisos gerados pelo compilador.

5) Componentes da janela Resultados da Compilacao:

6) Resultados da Compilagéo:
a) Mostra a qualidade erros, mensagens e avisos contidos no arquivo fonte compilando;
b) Lista todos os erros, mensagens e avisos da compilacao, indicando:
i. 0 niUmero;
ii. a descricao;
iii. a linha onde se localiza no arquivo fonte;
iv. qual o arquivo a que se refere.
Obs.: A partir deste ponto os erros, mensagens € aviso gerados pelo compilador, serdo chamados
somente de mensagens, ficando entendido que se trata dos 3 tipos.
c) Comentario do erro, mensagem ou aviso selecionado com o mouse;

7) Interpretando e localizando os resultados da compilacéo:
Para localizar a linha que se refere a mensagem gerada na janela Resultados de Compilagao, siga
0s passos abaixo:
a) Cligue na mensagem que desejar localizar;
b) A linha correspondente a mensagem na caixa de listagem ficard em azul, indicando a sua
selecao;
c) Na janela de edicdo, o cursor ira até a linha referente a mensagem e ird seleciona-la
inteiramente;
d) Na caixa de comentéario da mensagem da janela Resultados de Compilagéo, aparecerd um
pequeno texto explicativo referente a mensagem selecionada.

8) Alterando as configurac6es de montagem/compilacao:
Algumas configuragdes podem ser alteradas ou adicionadas na linha de compilacdo executada
pelo compilador, para altera-las, siga os passos abaixo:
a) No menu escolha Ferramentas — Configuragbes de Compilador, ou através da tecla de
atalho F6;
b) O software pode trabalhar com duas linguagens de programacdo. Uma delas é o
Assembly, utilizando o montador MPASM da Microchip fornecido juntamente no CD. A
outra é o C-CCS, utilizando o compilador C do fabricante CCS, que ndo é fornecido. A
selecdo de qual compilador é feita na opcdo Compilador da janela de configuracdo do
compilador. Para cada compilador ha opgdes diferentes, conforme abaixo:
a) Montador MPASM:



43

i Escolha de processador;
. Formato do arquivo “.hex” a ser gerado;
iii. Diferenciacao de letras maiulsculas;

iv. Permite o uso de Macros;
V. Base numérica padrdo: decimal (DEC), hexadecimal (HEX) ou octal (OCT);
Vi. Configuragao de tabulacao.

A linha que sera executada com as opgdes selecionadas € mostrada logo abaixo na janela.
b) Compilador CCS;

i. Indica o local onde se espera que esteja instalado o compilador;

ii. Permite checar se a versao do compilador é compativel com o gravador;

iii. Mostra a linha de comando que sera utilizada para a execugao do compilador.

9) Trabalhando com placa de gravacao:

Para trabalhar o sistema de gravagao, siga os passos:

a) No menu escolha Ferramentas — Programador, ou através da barra de ferramentas, ou
ainda através da tecla de atalho F9;

b) A janela Gravador aparecera.

Obs.: Para usuarios do WinNT, Win2000 ou WinXP, tenha a certeza de que o software foi

instalado para usuarios que possuam as permissées necessarias para acessar a porta paralela

do PC.

¢) A janela Gravador possui 0s seguintes componentes:

i. Configuragbes de processador;

ii. Bits de configuragao dos fusiveis;

iii. Comandos de gravacao;

iv. Status de andamento do processo.

10) Executando comandos de gravacao:
a) Apagando:
Lé toda a memaria de programa, verificando se esta apagada.

b) Programar:

i. Programa a meméria de programa do dispositivo, de acordo com os dados
contidos na janela Memdria de programa;

i. Programa a meméria de dados do dispositivo, de acordo com os dados contidos
na janela Memdria de dados. Se esta janela ndo estiver aberta, a memoria de
dados do dispositivo permanecera inalterada;

iii. Programa dos bits de fusiveis de acordo com a configuragao escolhida.

Obs.: Caso se esteja utilizando os componentes PIC16F628/627 fica disponivel a opgao

MCLR. Caso essa opcao seja selecionada “como I/0” o chip deve ser apagado antes de

realizar uma regravagao.

c) Verificar:

i. Lé a memoria de programa do dispositivo, comparando com os dados contidos na
janela Memdria de programa;

ii. Lé a memoéria de dados do dispositivo, comparando com os dados contidos na
janela Memdria de dados, caso esta janela esteja aberta.

d) Ler:
i. Lé meméria de programa do dispositivo, colocando os dados nos
enderecgos correspondentes na janela Memdria de programa;
ii. Lé meméria de dados do dispositivo, colocando os dados nos enderegos
correspondentes na janela Memdria de dados, caso esta janela esteja
aberta.



44

iii. Lé os bits de fusiveis e reconfigura as opg¢des mostradas na janela
Gravador secédo Bits de configuragdo, de acordo com os bits lidos do
dispositivo;

iii. Lé o Device ID.

e) Apagar:
Apaga todos os dados do dispositivo, incluindo, meméria de programa e dados, bits de
configuracdo e Device ID.

11) Trabalhando com arquivos “.hex” separadamente de um projeto:

E possivel trabalhar abrindo e salvando arquivos “.hex” separadamente. Por exemplo para abrir um
arquivo “.hex” de meméria de programa, siga 0s seguintes passos:

a) No menu escolha Arquivo — Abrir programa (*.hex);

b) Escolha o arquivo desejado;

c) A janela Memdria de programa aparecera, com o contetdo do arquivo.

Siga 0os mesmos passos para abrir um arquivo de memdéria de dados, neste caso aparecera a
janela Memdria de dados contendo os dados do arquivo que foi aberto.

Estando os dados nas janelas de memoria de programa ou de dados, pode-se gravar no
dispositivo estes dados.

12) Abrindo o manual do componente:

E possivel abrir o manual do microcontrolador que estiver sendo usado. Para isso é necessario
que o Acrobat Reader esteja adequadamente instalado no computador. A instalagcdo desse
programa esta no CD. Para abrir o manual do arquivo basta clicar no icone.

3. Hardware
A figura abaixo a placa didatica Pratic 628 baseada no PIC16F628.

Na figura acima sdo enumeradas as principais aplicagdes de hardware, listadas abaixo:
1. PIC16F628;

2. Circuito de gravagao in-circuit;

3. Conector de acesso ao portal B;

4. Conector de acesso ao portal A;

5. Chave de reset ou uso geral;

6. Chave de interrup¢éo ou de uso geral;

7. Chave de contador ou uso geral;

8. Dois displays de sete segmentos multiplexados;

9. Oito Leds;

10. Dip Switch de oito chaves;

11. LDR (resistor variavel com luminosidade) com ajuste;

12. NTC (resistor variavel com temperatura) com ajuste;

13. Buzzer;

14. Lampada incandescente;

15. Um relé;

16. Conectores para acesso aos terminais do relé;

17. Jumpers para configurac¢do das fun¢des do port B;

18. Jumpers para configurac¢do das fungdes do port A;

19. Trimpot;

20. Conector paralelo DB25F (para gravacao);

21. Circuito de alimentacgéo;

22. Conector para fonte de alimentacao externa;

23. TRIAG;

24. Detector de cruzamento por zero;

25. Chave “Programar/Executar”.



45

3.1. Descricao do hardware:

O sistema é baseado no PIC16F628A, que apresenta as caracteristicas:

® 2048 palavras de 14 bits de memaria de programa FLASH;

® 224 bytes de memoria de dados RAM;

® 128 bytes de memoéria de dados EEPROM;

® 3 Temporizadores/Contadores;

® 2 Comparadores analégicos;

® Médulo CCP (Captura/Comparagao/PWM);

® Comunicagao serial sincrona e assincrona (USART);

® Tensao de referéncia interna programavel;

® Encapsulamento DIP de 18 terminais;

® 16 terminais configurdveis como entrada ou saida independente;

® 10 interrupgoes;

® Varios modos de oscilador (XT, LP, HS, RC interno e externo).

A gravagao do componente é feita in-circuit, por um circuito ja presente na placa. Isso significa que
0 componente ndo necessita ser retirado da placa para gravagao; basta apenas mudar a posicao
da chave RUN/PROG para “Programar” (PROG) e gravar, mudar a chave para “Executar” (RUN) e
rodar o programa gravado, conforme mostrado na figura abaixo. Dessa forma é aumentado
consideravelmente o tempo de vida do componente, evitando o desgaste/quebra dos terminais,
decorrente das retirada constante do microcontrolador da placa para gravacao.

Executar (RUN)
Programar (PROG)

Quanto aos aplicativos de hardware presentes na placa, foi elaborado um conjunto de circuitos que
permitisse uma grande gama de experimentos. Esses circuitos sdo ligados ao microcontrolador por
jumpers, o que torna o sistema extremamente maleavel. Além disso, os terminais dos portais do
microcontrolador estardo acessiveis em dois conectores, de forma que o usuario pode interligar a
placa aplicagbes desenvolvidas por ele mesmo.

O sistema possuira chaves ligadas a terminais com fungdes especiais (reset, interrupgao,
contador). Tais terminais também podem ser configurados como entradas normais. Para entrada
de dados ha também um Dip Switch (conjunto de oito chaves). Abaixo dessas chaves esta escrito
na serigrafia da placa os pesos binarios de cada bit do port A, ou seja, a chave “1” se refere ao bit
0, a chave “128” se refere ao bit 7, e assim por diante. Conta também com dois displays de sete
segmentos para apresentacdo de valores numéricos. Existem também oito LEDs que podem
apresentar valores de oito bits ou serem acionados individualmente. Os LEDs possuem valores na
serigrafia que indicam em qual pino do port B eles estao ligados, de forma analoga ao Dip Switch.

PORT A PORT B
Dip Switch LEDs

Foram incluidos também um buzzer (buzina) e uma lampada incandescente. Ambos podem ser
acionados através de uma saida normal ou utilizando o médulo de PWM.

Estéd presente também um relé para ser acionado pelo microcontrolador. H& um conector de tipo
KRE que permite o acesso aos terminais do relé, conforme mostrado a seguir.

A placa conta também com um circuito de controle de carga AC com TRIAC, com o circuito de
detecgdo de cruzamento por zero ja incorporado.

Todo o circuito AC é opto-acoplado, ou seja, isolado da placa.

Para fazer uso dos médulos comparadores analégicos existem um Trimpot de Referéncia, um LDR
(resistor controlado por luminosidade) e um NTC (resistor controlado por temperatura). Tanto o
LDR como o NTC tem trimpots para ajustes.

A placa suporta ainda a conexdo de um teclado e um display tipo telefénico, fornecidos
separadamente.



46

® O esquema elétrico da placa encontra-se no CD na pasta “Esquemas”.

3.2. Jumpers:
A tabela abaixo apresenta as fungdes selecionaveis através dos jumpers. A seqiéncia dos jumpers
€ a mesma da placa.

® Para a utilizagdo de teclado e display todos os jumpers devem ser retirados, com excegao de
JP3.

A tabela a seguir traz os sinais associados a cada um dos pinos do microcontrolador. No caso dos
pinos ligados a jumpers, a coluna “jumper” tras essas indicagbes. Segue abaixo uma legenda da
tabela:

SEG_X: Sao os segmentos do DISPLAY de 7 Seg;

CL_X: S&o as colunas do Teclado Matricial;

L X: S&o as linhas do Teclado Matricial.

*» Para uso de LCD e de teclado todos os jumpers, com exce¢édo do JP3 devem ser retirados.

4. Instalacao

4.1. Instalacdo do Software:

Para instalar o software:

® Utilizando o Explorer, clicar no drive de CD-ROM (D: ou E);

® Entrar na pasta Instalacéao;

® Executar o aplicativo Setup, através de um clique duplo;

® Seguir as orientacdes do software de instalagao;

® Para usuario de WIinNT, WinXP ou Win2000, apés a instalagdo do software do Pratic 628,
executar o arquivo port95nt.exe em "\instalacdo” do CD-ROM (caso nao faga isto o software ndo
rodara).

Para utilizar os codigos de exemplo:

® Utilizando o Explorer, clicar no drive de CD-ROM (D: ou E:);

® Copiar a pasta exemplos para o HD do computador;

® Antes de utilizar um cédigo fonte, verificar em suas propriedades se ele ndo estd como “Somente
leitura”.

Para verificar as propriedades de um arquivo:

® Entrar na pasta que contém e clicar sobre o arquivo com o botéo direito do mouse;
® Escolher propriedades (ultima opgao do menu);

® No campo Atributos verificar se a opcao Somente Leitura esta selecionada.

®» Para retirar o atributo de somente leitura do arquivo basta desmarcar a opgao Somente Leitura.

4.2. Instalacao do Hardware:

Para a instalacdo do hardware devem ser seguidos 0s seguintes passos:

® Conectar um extremidade de cabo DB25M-DB25M (paralelo) a porta LPT1 (porta de impressora)
do computador;

® Conectar outra extremidade do cabo DB25M-DB25M ao conector DB25 da placa principal do
Pratic 628;

® P¢ ultimo conectar-se a fonte a placa principal pelo conector.

» Atencdo para tensdo da tomada! A chave 110/220 da fonte deve estar corretamente
selecionada.

Para a conexao dos modulos de display e teclado devem ser observados os seguintes cuidados:
® Ao conectarem-se 0s cabos aos modulos e a placa principal deve-se estar atento para a
indicacao do sentido do conector;



47

® Recomenda-se fazer a conexao dos modulos antes de se ligar a fonte a placa principal.

5. Resolvendo problemas
1 — Quando eu clico em “programar” o gravador realiza a gravagéo e mostra a mensagem que a
gravagao foi concluida, mas quando em “verificar” aparece um aviso de erro na verificagao.

Ha duas possibilidades:

12) A opcao “code protect” (protecdo e codigo) ndo esta desligada, portanto o programa gravado
esta protegido contra leitura;

22) Por algum outro motivo o microcontrolador ndo esta sendo gravado. Veja a questdo 2:

2 — O microcontrolador ndo esta sendo gravado:

12) A fonte sai de fébrica ajustada para 220V. Se ligada em 110V o Unico sintoma sera a nao
gravagao. Selecione corretamente a tensao da fonte;

22) A chave “run/prog” deve estar em posi¢ao “prog” durante o processo de gravagao;

3?2) O microcontrolador que estd sendo utilizado deve estar devidamente especificado no campo
“Processador” da janela “gravador”, ha diferenga entre s modelos com “final A” e os comuns
no que se refere ao processo de gravacgao.

42) A janela “memdéria de programa” deve estar aberta e contendo o programa a ser gravado,
durante o processo de gravacdo. Quando for compilar/montar um programa, mantenha a janela
(“Gravador” aberta). Quando o arquivo for compilado sera aberta a janela “Meméria do Programa”
(e a janela “Memoria de dados”, se estiver sendo usada). Nao feche essas janelas;

52) O jumper JP5 deve estar conectado em qualquer posicdo (1 ou 2). Havera erro na gravagao se
ele for retirado.

3. N&o consigo ler um pic. Quando clico em “ler” aparece:

a) todos os enderecos 0000.

O microcontrolador esta protegido contra leitura. Nao é possivel 1&-lo nessas condicoes.

b) todos em 3FFF.

19) o microcontrolador esta apagado;

29 tendo certeza de que ele esta gravado, pode haver algum problema na gravacdo. Veja a
solugdo da Questao 2:

4. Quando vou compilar/montar um arquivo de exemplo, aparece a mensagem “Erro nimero 5”.
O arquivo em questao tem propriedade somente leitura. Veja a secdo “Instalagdo do Software”
nesse manual como resolver esse problema.

5.1. Suporte Técnico:
A Exsto tecnologia oferece suporte técnico gratuito para questdées de utilizagdo de seus produtos
através do e-mail suporte@exsto.com.br ou do telefone (35) 3471-6898.

A placa da Exsto vém, de fabrica, sem o cristal de 4Mhz e os capacitores de 15pF. Isto
permite que vocé use as I/0Os Ra6 e Ra7 do PIC, mas devera usar o oscilador interno do
mesmo. Em alguns exemplos deste livro usaremos o cristal no hardaware e o oscilador XT
no software, para isto vocé devera soldar um cristal e dois capacitores de 15pF no local
indicado. Eu aconselho que vocé solde terminais torneados nestas posicoes, de forma a
conseguir apenas encaixar, quando necessario, o cristal e os capacitores. Aviso vocé, leitor,
sobre isto, para que possa fazer o maximo de experiéncias possiveis usando os cédigos
fontes contidos neste livro e na homepage da Exsto ( http:/www.exsto.com.br Jou na minha
pagina sobre microcontroladores
http://www.luizbertini.net/microcontroladores/microcontroladores.html




48

Antes de cada codigo fonte havera um alerta se vocé deve ou nao usar o cristal externo de 4
MHz.

Vocé também podera trabalhar com um cristal de 20Mhz, contanto que use um

PIC 16F628A — 20 que oscila em até 20Mhz.

Lembre-se que, se usar um cristal de 20Mhz devera setar o oscilador para HS.

Capitulo 25 )
RESUMO DAS INSTRUCOES

25.1. Algumas Dicas sobre as Funcoes:

Tudo o que esté escrito abaixo é baseado na pratica:

Instru¢des muito usadas em Loopings: goto
call
return
decfsz
clrwdt
incfsz
nop
movwf
movlw

Instrucbes usadas em leitura de chaves: btfsc

btfss
nop

Instrugcbes usadas no cabecalho: moviw

movwf
bcf
bsf
clrw
retfie

Mas, e estas “letrinhas” f, k, W, d, R, b o que significam?

f —> € um registro que deve estar definido no campo do cabegalho onde colocamos as variaveis.
Deve ter o valor entre 0 a 127 decimal.

k — € normalmente, um valor que sera carregado, normalmente de novo, no registrador de
trabalho W. E um ndimero entre 0 a 255 decimal. Pode ser chamada de constante.

W —> é o registrador de trabalho, tudo ou quase tudo, que o PIC faz passar por ele.

d —> o d pode ser colocado ou nao, se for colocado, o resultado sera salvo nele, mas se nao for
colocado o resultado sera salvo em f. Ele especifica o destino do resultado da instrugao:

Se d = 0 o resultado é gravado em W;

Se d = 1 o resultado é gravado no registrador indicado na operagéo, ou seja, f.

Se nao for colocado o padrdo sera 1, ou seja, o resultado sera gravado no registrador f da
operagdo em W.



49

R —> é um nome que vocé dara ha uma rotina ou a uma parte do programa. Usado com goto e call.

b —> o b define um bit de um determinado registrador e vocé precisa usa-lo para que as instrugbes
que o antecedem funcionem corretamente. Deve se um numero entre 0 a 7 decimal.

Observacgoes:

Os numeros estéo indicados em decimal, mas, podem ser em binario ou hexadecimal, basta
estarem dentro dos valores apropriados.

Depois de cada instrugao, devemos usar o ponto e virgula (;) para separa-lo dos comentarios. E
vamos comegar isto logo. Os comentarios ajudam.

Capitulo 26 )
COMO FUNCIONAM AS INSTRUCOES

Vamos estudar as instru¢gées, uma a uma, desta forma:
- Instrugéo.

- Comentarios.

- Significado.

- Explicagéo.

- Exemplo tedrico / Prético.

- Flags afetados nos registros.

Todos em ordem alfabética, para ficar mais fécil de encontra-los.

Instrucao:
addlw k ; comentarios

Significado:
- Soma a constante k (valor numérico entre 0 a 255) a W.

Explicacéo: ]

- O valor de k sera somado a W e o valor resultante sera no préprio W. E importante que o valor
ndo seja maior do que 255, pois temos 8 bits para trabalhar e 2° nos proporciona 256, posi¢des, ou
seja, de 0 a 255.

Exemplo:
addiw 45 ; 0 resultado desta instrugao colocara

; o valorde W =45,

Flags afetados:
C, Z, DC —> todos do registrador STATUS.

Instrucao:
addwf f, d ; comentarios

Significado:
- Soma o valor de W com f.

Explicacao:
- O valor de W sera somado com o valor que existir em f.
Se d = 0 o resultado sera salvo em W.



50

Se d = 1 o resultado serd salvo em f.
O padrdo é d = 1 e, na maioria dos programas € assim que serd, e o valor sera salvo em f.

Para salvar em W use a instrucao assim:

Addwf f, 0 ;

Exemplo:
W=10ef=7

addwf f ; somara 10 que é o valor de W
;com 7 que é o valor de f
;e oresultado seraf=17

Mas, se a instrucao for assim:

addwf f, 0 ; somara 10que é o valor de W
;com 7 que é o valor de f
; e o resultado sera W = 17.

Veja a diferenga de se colocar d = 0 (ndo se coloca d = 1 pois, ja € o padrao).

Flags afetados:
C, Z, DC —> todos do registrador STATUS.

Instrucao:
andlw k ; comentarios

Significado:
- Executa a fungéao I6gica AND ou E entre W e o valor numérico k.

Explicacéo:
- Seréa efetuada uma operacao and bit a bit e para visualizarmos isto € mais facil ver em binario. O
resultado sera salvo em W.

Exempilo:
SeW=11110000ek=00001111

andlw k; iremos fazer a operagéo E bit a bit
; 0 que resultara no seguinte:
; W=11110000
; k=00001111
; 00000000
; 0 valor salvo em W sera igual
;20000000 0 ou zero. Portanto:
W=0

Flags afetados:
Z —> do registrado STATUS. Neste caso Z sera igual a 1 pois o resultado da operagao foi 0.
Se fosse diferente de Z seria igual a 0.

Instrucao:
andwf f, d ; comentarios

Significado:
- Executa a funcao logica “E” entre W e F.



Explicacao:
- Seré feita uma operacao “E”, bit a bit, entre W e f.

Exemplo:
SeW=00001111 efF=1111000 1

andwf f; operacdo E bit a a bit
; € visto resultard em:
; W=00001111
; f=11110001
X 00000001
; o valor salvo em f sera:
;iguala 1.

Mas, se a instrucao for assim:

andwf f, 0 ; 0 valor agora sera salvo em
; W, isto devido ao o depois
;do f.

Flags afetados:
Z —>registrador STATUS. Neste caso Z = 0 pois o resultado da operacao foi diferente de 0.

Instrucao:
bcf f, b ; comentarios

Significado:
- Faz o bit b do registrador f igual a 0.

Explicacéo:
- O bit indica por b (que deve ser um nimero de 0 a 7) sera zerado no registrador f.

Exempilo:
Sef=11111111=portb

bcf portb, 7 ; coloca zero no bit 7 do porb
; 0 que faz o valor do portb ficar
;iguala01 111111

Flags afetados:
- Nenhum.

Instrucao:
bsf f, b ; comentéarios

Significado:
- Faz o portb do registrador f igual a 1.

Explicacéo:
- O bit indicado por b, que deve ser um bit de 0 a 7, sera colocado em nivel légico 1 (5Vpp neste
PIC).

Exemplo:
SeF=00000000 = portb



52

bsf portb, 0 ; fard com que o bit 0 do portb
;seja
;veja:0000000 1

Flags afetados:
- Nenhum

Instrucéo:
btfsc f, b ; comentarios

Significado:
- Testa o bit b do registrador f e pula a instrugao seguinte se b = 0.

Explicactes:
- O bit b do registrador f sera testada, se for 0 a préxima instrucao sera pulada se for 1 a préxima

instrucdo sera lida. Esta instrugéo é muito utilizada em testes condicionais associadas a chaves.

Exemplo:
Seoportb=00000001

btfsc portb, 0 ; testa o bit 0 da portb
nop ; como ele é 1 a préxima instrucao
goto A ; élida
; como a instrucao seguinte é um NOP
; 0 PIC esperara um ciclo de maquina.

Seoportb=11111110

btfsc  portb, 0 ; testa o bit 0 da portb

nop ; como ele é 0 pula o NOP
goto A ; € vai para a instrugdo GOTO
Flags afetados:

- Nenhum

Instrucao:

btfss f, b ; comentarios

Significado:
- Testa o bit b do registrador f e pula a proéxima instrugéo se b = 1

Explicacéo:

- Supondo que o bit b seja uma entrada do portb podemos usar esta instrugao para testar se esta,
que esta ligada com uma chave, esta ligada no Vcc ou no terra.

Se estiver no Vcc (1) a préxima instrucao sera pulada, se estiver no terra (0) sera lida.

Exemplo:
Seportb=10000000

btfss portb, 7 ; testa o bit 7 do portb

goto X ;como ele é 1 a préxima instrugao

goto Y ; serd pulada e o programa néo ira
; para X mas, sim para 'Y



53

Mas se fosse assim:
Se portb=00000000

btfss portb, 7 ;testa o bit 7 da portb
goto X ; como ele é 0 1é a instrugéo
goto Y ; seguinte e vai para X

Da para perceber que com um simples apertar de botdo o seu programa pode fazer uma coisa ou
outra.

Flags afetados:
- Nenhum.

Instrucao:
call k ; comentarios

Significado:
- Chama uma sub-rotina

Explicacéo:

- Esta instrugdo chama uma sub-rotina e pula um pedago do programa, mas, para saber como

voltar, entra em cena o “Famoso C ou Program Counter”. Quando vocé usa esta instrugao, e
digamos que ele esteja na linha 40, o PC salva o endere¢o 40 + 1 ou 41 e na hora de voltar da
sub-rotina, sabe que deve voltar para a linha 41. Simples néo.

Exemplo:
call tempo ; desvia o programa para a
linha depois  ; sub-rotina tempo

; quando voltar da sub-rotina voltara
; para a linha imediatamente depois
; da CALL tempo

Flags afetados:
- Nenhum

Instrucao:
clrf f ; comentarios

Significado:
- Coloca 0 no registro f

Explicacéo:
- O registro ftera o valor 0,ou0 0000 00 0 b ou 00H. Esta instrugdo também fara com que o

Flag Z figue em 1, ou seja, “setado”.

Exemplo:
Se zeca=1111 1111

clrf zeca ; Zero zeca
; zeca ficaiguala0000 0000

Flags afetados:
Z —> do registrador STATUS, pois como o registrador fica todo em zero ele, o Z, vai para 1.
Z=1.



54

Instrucao:
clrw ; zera o registrador de trabalho W

Significado:
- O W terd o valor 0 e o flag Z passara a ser 1. Se vocé quiser ter certeza que W virou 0, teste o
flag Z e veja se ele virou 1, pense como.

Exempilo:
Se W =254

clrw ; W era igual a 254, mas, apds
; esta instrugdo éiguala 0

Flags afetados:
Z —>do STATUS Z =1

Instrucao:
clrwdt ; zera o watch dog impedindo o
; reset do PIC
; esta fungéo tem que estar
; dentro das loopings. Caso contrario,
; 0 watch dag estoura, reseta o PIC e
; seu programa nao funciona.
Significado:

- reseta 0, watch dog

Explicacao:
- O watch dog, que € um timer independente de tudo, serd zerado, impedindo o reset do PIC. Se o
prescaler estiver direcionado ao watch dog este também sera zerado.

Exempilo:
O watch dog conta.

clrwdt ; reseta o watch dog ele zera e
; comega a contar novamente

Flags afetados:
TO\ e PD\ —> que estéo no registrador STATUS sé&o “setados” e virarao 1.

Instrucao:
comf f, d ; comentarios

Significado:
- faz o complemento dos bits do registrador f, ou seja, o inverte. Se eram:
0000 1111

Ficarao:
1111 0000

Explicacéo:
- Bit a bit serd invertido e vocé pode usar esta fungao para fazer um seqiiencial ou um painel que
escreva duas mensagens, va pensando.

Exemplo:



55

Se f=00000000

comf f ; inverte/complementa f
;que ficacomovalorde1111 1111
; e este valor é salvo, fica nele mesmo
Mas.

comf f,0 ; inverte/complementa f
;agoraovalorde1111 1111sera
; salvoem W e F continua
;com00000000
; veja a importancia dof, 0

Flags afetados:

Z —>do STATUS

Se o resultado for 0, Z sera igual a 1
Se o resultado for 1, Z serd igual a 0
S6 para variar.

Instrucao:
decf f, d ; comentéarios

Significado:
- Diminui em uma unidade o valor armazenado em f, que é um registrador.

Explicacéo:
- O nimero que esta em f sera diminuido em uma unidade, se era 10 depois da instrug¢ao virou 9.
Vocé pode usar esta instrugéo para fazer um detonador, brincadeirinha...

Exemplo:
moviw 45 ; carrega W com o valor 45
movwf tempo1 ; carrega tempo1 com o valor 45
decf tempo1 ; diminui 1 de tempo1 e agora
; 0 valor dele é igual a 44
; € W continua com 45
Mas,
movliw 45 ; ja sabe né
movwf tempo1 ; carrega tempo1 com 45
decf  tempo1, 0 ; decrementa 1 de tempo1

; 0 valor 44 sera salvo em W
; 0 valor de tempo 1 sera 45.

Flags afetados:

Z —>do STATUS

Se oresultado forzde 0—>2Z=0
Se oresultadofor=a0-—>Z=1

Instrucao:
decfsz f, d ; comentérios

Significado:
- Diminui uma unidade o valor que esta no registrador f e pula a proxima instru¢éo se o resultado
for zero.



56

Explicacao:

- O valor de f (que deve ser entre 0 a 255) sera diminuido em uma unidade (f — 1) e caso o
resultado seja 0 a instrug@o seguinte sera pulada. Esta instrucao é muito utilizada em Loops de
tempo.

Exemplo:

Se tempo2 =f =100

inicio: ; porta para “chegar” Looping
decfsz tempo 2 ; diminui 1 de tempo 2

goto inicio ; caso o resultado seja 0

bsf portb, 0 ; pula a instrucdo seguinte e nao vai

; para inicio. Mas, como resultado é

; 99 |1é a préxima instrugdo vai para

; inicio e fuga dano voltinhas/Loopings

; até zerar e acende o Led que esta na

; portb, 0 o resultado da “decrementagéo”
; € salvo no proprio tempo2.

Mas,

decfsz tempo2, 0 ; diminui de tempo2 e salva em W
; @ maneira de usar em Loops de
; tempo é a anterior

Flags afetados:
- Nenhum

Instrucao:
goto k ; comentarios

Significado:
- manda o programa para o enderego/nome simbolizado por k.

Explicacéo:

- Este desvio € incondicional, ou seja, ndo precisa de nenhuma condicéo ou teste. Ele diz vai e o
programa vai.

- Alguns dizem que usar goto é falta de conhecimento, falta de conhecimento é a arrogancia.

- Use com critério e use também outras ferramentas que ainda veremos

Exemplo:

goto livro ; vai para o livro
nop ; € pula os nops
nop ;

livro: X

Flags afetados:
- Nenhum

Instrucao:
incf f, d; comentarios

Significado:



57

- Soma 1 ao valor do registrador f (nunca pode passar de 255).

Explicacéo:
- Vocé somara 1 ao valor de f se ndo existir o d, o que corresponderé que ele é iguala 1, 0
resultado serd salvo no proprio f. Se no lugar de d existir um 0 (f, 0) o resultado sera salvo em W.

Exempilo:

moviw 55 ; carrega W com 55

movwf teste ; carrega teste com 55 mas W
incf teste ; continua com 55

; diminui 1 de teste (55-1 = 54) e teste
; agora tem o valor de 54 pois d = 1
; e o resultado foi salvo em teste

Flags afetados:
Z —> do registrador STATUS

Instrucao:
incfsz f, d ; comentarios

Significado:
- Soma 1 ao valor do registrador f € pula a préxima instrugao se o resultado for 0.

Explicacéo:

- Soma 1 ao valor do registrador f e pula a instrugdo seguinte se o resultado for 0 (quando falamos
“pula” a linha seguinte sempre estamos nos referindo a instrugdo seguinte). Agora vocé me
pergunta: Mas, quando que eu vou somar 1 a alguma coisa e vai dar 07 Calma.

Exemplo:

Sef=dicaedica=0

moviw 0 ; carrega W com 0
movwf dica ; carrega dica com 0

incfsz dica, 0 ;soma 1 ao valor de dica (1 +0=1)
; mas, salva em W e dica continua com 0
; portanto a préxima instrugéo é pulada
bsf portb, 1 ; esta instrugéo é pulada

Viu agora o “poder de d’? Ele faz esta instru¢gdo mais Util e funcional.
Flags afetados:

- Nenhum.

Instrucao:
iorlw k ; comentarios

Significado:
- Executa um “OR” ou “OU” entre W e k.

Explicacao:

- Um “OU” é uma operacgéo légica basica e vamos usar uma tabela da verdade e a simbologia
usada em “Técnicas Digitais.



58

Quando a entrada A “OU” a entrada B, forem iguais a 1 a saida sera 1. “Se tem 1 em uma entrada
tem 1 na saida, ndo importa quantas entradas”.
O resultado sera salvo em W.

Exemplo:
SeW=00001111ek=11110000

Lembre-se que k € um nome, vamos chama-lo de livro.

iorlw livro ; faz um OU entre W e livro
; W=0000 1111
;livio=1111 0000
X 1111 1111
; e salva o resultado em W mas e se
; vOcé quiser o resultado em livro veja
; as instrugdes seguintes
movwf livro ; carrega livro com o valor de W
; esta bem?

Flags afetados:
Z —> do registrador STATUS

Instrucao:
iorwf f, d ; comentarios

Significado:
- Executa um OU entre W e f.

Explicacao:

- Como j& vimos 0 OU é uma operagéo da légica Booleana ou dos “Técnicas Digitais”.

Esta operacao ira fazer um OU em o valor que esta em W e o valor que estd em f o resultado sera
salvo, como sempre, dependendo de d. Se d = 0 o valor sera salvo em W. Se d = 1 o valor sera
salvo em f. Lembre-se que a default, ou valor padrao para d, é sempre 1. Pois mais ébvio que
pareca, se vocé nao colocar 0 sera 1.

Exemplo:

moviwB0O0OO0O0 0010 ; carrega W com 2

movwf regfteste ; carrega regfteste com 2
moviwB0OO0O0O0 000 1 ; carrega W com 1. E 1 sim,

; 86 que esta em binario e
;BO0O00 0001éok.

iorwf regfteste ; Faz 0 OU de W com regfteste
; € salva em regfteste. Veja que
; eu até coloquei o 1 (mas ndo é
; preciso)
; W=00000001
;regfteste=0000 0010
; 00000011
; 0 resultado é 3 em regfteste

Flags afetados:

Z —>do STATUS e como a operagao ¢é diferente de 0 ele é igual a 0.

Instrucao:
moviw k ; comentarios



Significado:
- carrega W com o valor representado por k.

Explicacao:
- W terd o valor de k e este X pode ser escrito em decimal, binario, hexadecimal.

em decimal 10 ou .10 (mais para frente)
em binarioB 0000 00 00 (mais para frente mais explicagdes)
em hexadecimal 10H (mais explicagdes a frente).

Exemplo:
Se W = 0 ou qualquer outro nimero

movliw 17 ; 0 valor de W é 17 agora
; simples e extremamente Util
; W tinha que ser um “trabalhador”

Flags afetados:
- Nenhum.

Instrucao:
movf f, d ; comentarios

Significado:
- Move f para d

Explicacao:

- Até que enfim d vai pegar pesado.

Vamos ver.

Sed=0oud=W o valor ¢ armazenado em W.

Se d =1 o valor € armazenado em f.

Mas, que nada? E apenas uma forma de copar um valor de um registrador para W e manter este
valor no registro. Mas, tem mais.

Exemplo:
Se f = spock = 15 e W = 0 ou outro nimero.

movf spock, W ; move o valor de spock para W
; € W fica igual a spock e W = 15
Poderia ser assim:

movf spock, 0 ; moveria spock para W também
; sempre alteramos W

Mas também pode ser assim, e isto € que é importante, mas, assim como?

Vamos supor que vocé quer testar o Flag Z que indica se uma operacgéo resultou em 0, mas,
sempre mexer no valor que existe registrado W.

Veja:

movf spock ; desta forma o valor de spock é copiado para o
; proprio spock e se spock for 0 entdo Z sera
; 1spock =0—>2Z=1 e se spock for= 0 entdo Z sera 0
; spock # 0 —> Z = 0 sem colocar o registrador de
; trabalho W na jogada. Dia de folga dele.

59



60

Flags afetados:
Z —> do registrador STATUS. Este Flag sé para relembrar, é o indicador de zeros.

Instrucao:
movwf f ; comentarios

Significado:
- O valor que estd em W vai para f.

Explicacéo:

f € um registrador que tem um nome que vocé escolheu e definiu em uma area especifica do
cabecalho de programa. Alguns chamam de variaveis. O importante € que este nome, associado
ao f (mindsculo) tem que estar 14, senéo o software dara erro na compilagdo e nao funcionara.

Exemplo:
SeW =217

movwf jaca ; 0 valor de jaca sera 217, pois a instrugéao
; mandou fazer isto, esta instrugao sera
; muito usada em qualquer programa.
; Normalmente junto com MOVLW e sédo
; faceis e Uteis.

Flags afetados:
- Nenhum.

Agora que vimos um monte de movxxs, vamos fazer uma pausa para reflexdo...
Quando vocé quer saber se um registrador esta com o valor igual a 0 como vocé faz?

Ou vocé carrega este registrador no W e carrega o W em algum lugar que permita visualizar isto.
Como ver se algum Led se acende na portb, mas, usa a instrucao movf, ndo muda o valor de W e
sabe se o registrador estd com o valor 0 lendo o Flag Z.

Para isto serve movf.
Vamos ver exemplos destes dois modos:
Se o registrador dream =0 e W = 251.

movlw dream ; carrega W com o valor de dream que é 0 e o valor
; de W, que era 251, vai para 0 espago.

movwf portb  ; o valor de W vai para o registrador portb que como
; tem o valor 0, ndo acendera nenhum Led.
; Veja a seguir:
; Fig. 26.3

; 0 registrador portb € 0 mas, desta forma mudamos
; 0 valor original de W.

Para ndo mudar.



61

Sedream=0e W =251

movf dream ; esta instrugéo vai carregar em dream o préprio valor de dream e
; como em um sonho, ndo afetarda o valor de W. Vocé esta vendo
; W junto as instru¢des? Nao. Entdo o valor de W continua igual
;2251 (W = 251), para saber se dream ¢ igual a zero (0) basta
; verificar o Flag Z se ele for igual a 1 significa que dream é igual
;a0.Z=1—dream = 0 mas, este teste deve ser feito logo apds
; a instrucdo MOVF.

Como fazer isto?

movf dream ; carrega dream em dream
nop ; d& um tempo para ter certeza da operacao
btfsc STATUS, 2 ; testa o bit2 (Z) do STATUS como ele é 1
; 1& a linha seguinte e
bsf portb, 0 ; acende o Led 0 na portb, sem mexer com W.

Esta é uma das formas. Vamos aprender a ler os valores dos registradores para ajudar nos
programas.

Chega de reflexao.

Instrucao:
nop ; comentarios

Significado:
- Nao faz nenhuma operagao

Explicacéo:

- Durante o nop o microcontrolador fica um ciclo de maquina sem fazer nenhuma operagao na
CPU. O “tempo perdido” dependera do clock do PIC. Vocé pode usar o nop para “arredondar” um
Loop de tempo, para esperar entre uma instrugao e outra (as vezes isto é Util e vocé vera nos
programas, exemplos).

Exemplo:
nop ; espera um ciclo de maquina

Flags afetados:
- Nenhum

Instrucao:
retfie ; comentarios

Significado:
- A funcao desta instrugao é terminar com a interrupgdo em andamento.

Explicacao:

Ela busca o enderego de retorno na pilha (STACK) e seta o flag GIE, que é o responséavel pelas
interrupgdes gerais (GIE = 1).

Embora ndo tenhamos falado nada semelhante até agora, esta instrucao demora dois ciclos de
magquina. Conversaremos mais disto depois.

Exemplo:



62

call interrupcao; chama a rotina de interrupgao

------- ; tracinhos s&o linhas de programa

retfie ; volta para a linha seguinte
;ao call e faz GIE = 1

Flags afetados:
- Ja que GIE é um flag ele é afetado e ele esta na INTCON.

Instrucao:
retlw k ; comentarios

Significado:
- Volta de uma sub-rotina com o valor de W = k.

Explicacao:

- Além desta instrucado chamar a de sub-rotina ela faz o valor de W igual ao valor de k. Para saber
em qual linha voltar ela busca o endereco na pilha ou stack. Esta instrugdo gasta dois ciclos de
maquina.

Exempilo:

1 —moviw 10 ; carrega W com 10

2 -nop ; espera um ciclo de maquina
3 —call saudade ; vai para a sub-rotina

; saudade
4 — bsf portb, 0 ; seta o bit zero da portb

end ; indica o termino do programa

5 — saudade: ; indicador para a sub-rotina

6 — bsf portb, 1 ; seta o bit 1 da portb

7 —retlw 2 ; retorna da instru¢do mas, muda

; 0 valor de W de 10 para 2.

Mas para que tenta coisa?

Para vocé ver que a instrugéo troca o valor de W e para vocé comegar a ver as chamadas de sub-
rotinas e as sub-rotinas.

O programa funcionara assim:

Linha 1 —> W é carregada com o valor 10.

Linha 2 — espera um ciclo de maquina.

Linha 3 —>a instrugdo call manda o programa para linha 5.

Linha 5 —> ter o nome da sub-rotina.

Linha 6 — acende o Led que esta na portb, 1.



63

Linha 7 —> muda o valor de W para 2 e volta para a linha imediatamente apds o call, que é a linha
4.
Linha 4 — acende o Led que esta na portb, 0.

Flags afetados:
- Nenhum.

Instrucao:
return ; comentarios

Significado:
Retorna da sub-rotina

Explicacéo:

- Com esta instrugé@o vocé volta da sub-rotina, volta para a linha imediatamente apds a chamada
de sub-rotina, feita com a instrugao call. ]

Esta instrucao também demora 2 ciclos de maquina. E importante saber o quanto demora cada
instrugao quando fazemos temporizadores de precisdo bem como quando fazemos geradores de
video ou de pulsos. Estamos falando do stack de novo.

Exemplo:

call lembrancga ; vai para a sub-rotina lembranca
nop ; a volta da sub-rotina é nesta linha
; (linha com o nop)

lembranca ; indica o inicio da sub-rotina lembranca
moviw 100 ; carrega W com 100
return ; volta para linha imediatamente

; apbs o call que é a linha com o nop

Flags afetados:
- Nenhum.

Instrucao:
rlf  f, d; comentarios

Significado:
Caminha com o0s numeros para a esquerda.

Explicacao:
- Para entendermos isto o melhor é ver tudo em binario. Vamos ver:

Antes da instrucdo vocétem—>0000 0000 e C =1 instrucao.

Depois da instrugao vocétem —>0000 000 1 e C = 0 instrugéo.

Depois da instrugao vocétem —>0000 00 1 0 e C = 0 instrugéo.

Depois da instrugdo vocétem —>0000 0100e C =0.

Vocé vém caminhando com o bit 1 da direita para esquerda e passa pelo C.

Esquerda 0 « 1 direita

Se o valor de d for igual a 0, como ja sabemos o valor, sera salvo em W, usando o default o valor
sera salvo em F. Esta instrugéo é util para se fazer leds ou lampadas correrem de um lado para
outro.

O flag C do registrador STATUS é importante nesta fungao. Para quem nao se lembra o
Carry/Borrow indica quando aconteceu um carry-out. Em outras palavras, quando um ndmero 1



passa do bit 7 para o bit 8 (nona posi¢éao) que de uma forma simples, poderiamos dizer que é o
flag C do registrador STATUS. Veja:

Antes da instrucdo—>0111 111 1eC =0 instrugao.

Depois da instrugdo—>1111 11 10e C =0 instrugéo.

Depois a instrucdo—>1111 1100e C =1 houve um carry-out.

Vocé pode aproveitar a leitura do flag C, que é o bit 0 do registrador STATUS para resetar o
registrador ou fazer através da instrugéo rrf, os “1” voltarem.

Exemplo:

SeC=0

moviw 1 ; carrega W com o valor 1

movwf anda  ; carrega o registrador anda o valor 1

rif anda ; rotaciona ou anda com um 1 da direita para

; esquerda « direita
; agora o valor de anda é igual a 10 que
; corresponde a 2.
rlf anda ; adiciona mais um 1, agora anda fica
; igual a 100 que corresponde a 4.

Flags afetados:
C — Carry/Borrow do registrador STATUS. Perceba que o bit 7 vai sendo “empurrado” para o flag
C.

Instrucao:
rrf f, d ; comentarios

Significado:
Caminha com o0s numeros para a direita.

Explicacéo:
Vamos ver em binario para entender melhor:

Antes da instrucdo —>0000 0000 e C = 1 instrugéao
Depois da instrugcdo—>1000 000 0 e C = 0 instrugao
Depois da instrugdo—>0100 0000eC=0

Vocé caminha da esquerda para a direita e passa pelo C.
Esquerda —> direita

Exemplo:

SeC=0

moviwB 1111 11171 ;Wassumeovalor1111 1111
movwf andai ;carregaandalcom1111 1111=255
rrf andaf ; caminha com os ndmeros para a

; direita passando pelo flag C

; 0 valor de anda1l sera agoraigual a

;0111 1111=127e Cseraigualal (C=1)
rrf andaf ; rotaciona para a direita um digito o valor

; de andal serd agoraiguala1011 1111 =191

;e Cseraigualal (C=1)

Flags afetados:

64



65

C — bit0 do registrador STATUS, perceba que o flag C (o valor que esté nele) vai sendo
“empurrado” para o bit7.

Outra pausa para meditagéo.

Estas duas instrugdes, muitas vezes ndo sao usadas pois, o0 programador nao as entende direito
(isto € uma observagao minha, feita por pura observacgao, na pratica). Vamos mostrar elas de uma
outra forma e descrever seus segredos.

Observacéo:

- Elas ndo caminham apenas com o numero 1.

- Elas vao rotacionando ou trocando de lugar, um bit por vez, os bits de um registrador.

- Podemos usar o flag C para ajudar nos programas onde 0s usamos.

Vamos ver a estrutura da coisa.

rlf f, d —> rotaciona para a esquerda.

Quando aplicamos a instrugao rlf no registrador da Figura 26.5, acontecera o seguinte:

- O bit C, que tem o valor 0, vai enviar este valor para o bit 0 e assim todos serdo empurrados para
a esquerda e o bit C tera o valor 1, que era o niUmero que estava no bit 7. Se C = 1 ocorreu um
carry-out.

Vamos ver a estrutura da outra coisa.

rrf f, d — rotaciona para a direita.

Quando aplicamos a instrucao rrf no registrador da Figura 26.6, acontecera o seguinte:
- O bit C, que tem o valor 1, vai enviar este valor para o bit 7 e assim todos serdo empurrados para
direita. O bit 7 assumira o valor 1, que era de bit C, e o bit C assumira o valor 0 que era de bit 0.

Chega de meditagdo, vamos continuar de onde paramos.

“Antes que eu me esqueca, estas sao as instrugdes mais mal educadas do PIC, ficam empurrando
os bits pra 1a e pra ca”.

Instrucao:
sleep ;comentarios

Significado:
- Vai dormir PIC e economizar energia.

Explicacéo:
- Nesta condigcéo o contelido da meméria fica salvo e o processamento para, fazendo o PIC ficar
mais econémico. O oscilador também para e o0 Watch-dog e o prescaler sdo zerados.

Exemplo:

sleep ;o PIC “dorme”
; para sair do modo SLEEP vocé pode fazer
; algumas coisas (usar um despertador):
; - reset pelo pino MCLR ou Reset



; - estouro do Watch-dog, mas, ele precisa

; estar habilitado

; - interrupcao da EEPROM (Final de escrita)

; - interrupcao no RbO/INT

; interrupgéo através do Rb4 ao Rb7 da portb

; vocé pode perguntar como o Watch-dog consegue

; “estourar” se o oscilador esta parado. E que, seu

; esquecidinho, o Watch-dog tem seu proprio oscilador.
; Se vocé resetar ele, através do pino MCLR ou Reset,
; 0 PIC comecara a rodar do endereco 0 ou O0H em

; hexadecimalou 0000 0000 em binario que é 0

; inicio do programa.

Flags afetados:
- TO\e PD\ —> bits4 e 3 do STATUS

- TO\serdigual a 1 (TO\=1)
- PD\ sera igual a 0 (PD\ = 0)

Instrucao:
sublw k ; comentarios

Significado:
- Faz uma subtracdo entre W e k (tem gente que chama k de Literal).

Explicacéo:
- O valor do registrador de trabalho W é subtraido do valor de k e o valor é salvo em W. Perceba
que subtrair W de k é diferente que subtrair k de W.

- Subtrair W de k éigual a: k - W
- Subtrair k de W é igual a: W —k

E a primeira situacdo que est4 em agdo no uso desta fungao.

Da tudo no seguinte: Apés a instrucgo W =k — W

k tem que ter um valor entre 0 a 255.

Podemos perceber que as vezes, podem acontecer resultados negativos e ai?

E ai, que quando o resultado der negativo devemos somar 256 ao valor de W para saber o seu
valor real.

Exemplo:

moviw 10 ; carrega W com o valor 10

movwf santicfy ; carrega o registrador santicfy com 10
moviw 5 ; carrega W com 5

sublw  santicfy ; faz a subtracéo de Santicfy e W

; W =santicfy—-W —>W=10-5=5
; 0 valorde W éiguala b

; isto faz com que o flag C fique igual
;a1 (C=1)

Mas podia ser assim:

66



moviw 25 ; carrega W com 25 “em decimal”

movlw yourself ; carrega o registrador yourself com 25
moviw 27 ; carrega W com o valor 27
sublw yourself ; W =yourself -W —>W =25-27=-2

; 0 valor de C é igual a 0 (C = 0) pois, 0

; resultado foi negativo.

;Z = 0 pois, o resultado néo foi zero.
;ovalorde W é: W =256 + (-2) > W = 254

Flags afetados:
- C, DC e Z —>do registrador STATUS

Instrucao:
subwf f, d ; comentarios

Significado:
- Subtrai o valor de W de f e salva o resultadoem W sed=0ouemfsed=1.

Explicacao:
- O valor de W ¢ subtraido do valor de f. Na instrugao anterior o valor s6 podia ser salvo em W,
mas, nesta, devido ao d, ele pode ser salvo em W ou f por isto escrevemos assim:

d = f—W — pois d é quem define onde o valor sera salvo.

Também podemos ter resultados negativos.
Quando o resultado for negativo C = 0.
Quando o resultado for positivo C = 1.

Caso o resultado seja negativo, basta somar 256 decimal ao resultado e vocé tera o valor real.
Se Z = 0 o resultado nao foi zero.
Se Z =1 o resultado foi zero.

Exemplo:

moviw 100 ; carrega W com 100

movwF ano ; carrega o registrador ano com 100
; mas W continua com 100

moviw 100 ; carrega W com 101

subwf ano, 0 ; subtrai W de ano e salva em W (,0)
; como d = 1 fica:
iW=ano-W-—->W=100-101 = -1
; Z = 0 pois o resultado nao foi zero
; C = 0 pois o resultado foi negativo
;ovalorde W é: W =256 + (-1) = 255

Mas, podia ser assim:

moviw 100 ; carrega W com 100
moviw novo ;carrega o registrador novo com 100
; mas, W continua com 100
moviw 99 ; carrega W com 99
subwf novo ; subtrai W de novo e salva em novo
;novo =novo—W —>novo 100 -99 =1
; temos entdo: C = 1 pois, o resultado foi
; positivo e Z = 0 pois, o resultado nao foi zero.



Flags afetados:
- C, DC, Z —> do registrador STATUS

Instrucao:
swapf f, d ; comentarios

Significado:
- Inverte os bitsde0 a3 comosde 4a?7.

Explicacéo:
- Esta funcéo troca nibles, ou seja, troca 4 bits.

Vamos ver isto em binario:

Antes da instrucdo—> 0000 111 1 instrugéo
Depois da instrucdo—>1111 0000

O destino onde sera salvo este valor depende de d, s6 para variar.

Exemplo:
moviw BP0O0O0OO 11171 ;carregaWcom00001111
; que é um valor em binario
movwf troca ;carregaovalor0000 1111 emtroca
swapf troca ; inverte os nibles, o valor de troca fica

;1111 0000 o valor sera salvo erm troca.

Mas, pode ser assim:

moviw 15 ; carrega W com 15 que é um valor em decimal
movwf muda ; carrega o valor 15 no registrador muda
swapf muda ; inverte ao nibles, muda fica com o valor de

; 240 em decimal.
S6 por curiosidade, 0000 1111=15e1111 0000=240

Flags afetados:
- Nenhum

Instrucao:
xorwf f, d ; comentarios

Significado:
- executa a funcao OU exclusivo entre W e f.

Explicacéo:

68

- A funcao OU exclusivo é uma funcgao légica, ou uma fungao da aritmética Booleana. Bonito nao é

mesmo. Mas, na pratica trata-se da comparacgéao de niveis légicos na entrada de um dispositivo
(normalmente chamada de porta l6gica) e o resultado em sua saida. Algo similar a fung¢éo E ou

ou.

S6 quando as duas entradas forem diferentes € que a saida sera igual a 1. Este negocio de

“exclusividade” é coisa de...



69

O resultado sera salvo em um local definido por d.Para ver tudo isto melhor é Util recorrer ao
binario. Esta funcao é feita bit a bit.

Exemplo:

moviw B0011001 1 ;carregaW comovalor001100 11 em binario
movwf radio ; carrega radio com o valor de W

moviw BB11001100 ;carregaW comovalor11001100

xorwf radio ; faz a funcéo l6gica OU exclusivo entre W e radio

; W=1100110
;radio=0011001
X 1111111
; 0 resultado sera tud
;Z=0

0
1
1
ol(11111111)

Flags afetados:
-Z —>do registrado STATUS

Instrucao:
xorlw Kk ; comentarios

Significado:
- Faz um OU exclusivo entre W e k.

Explicacao:

- Esta funcéo faz uma operagéo bit a bit entre W e k.
A operacao logica é um OU exclusivo ou XOR.

- Bits diferentes tém como resultado 1.

- Bits iguais tém como resultado 0.

O valor sera salvo em W. E se vocé usar esta instrugdo com o proprio W o resultado é zero. Vocé
pode usa-la para comparar a combinagao de uma entrada/porta com o valor de W e quando der 0
acionar alguma coisa. A funcao anterior também é (til para isto. “Combinacao de cofre”.

Vamos usar o binario.

Exemplo:
moviw B10101010’ ; carrega W com 170 (é o mesmo valor em decimal)
xorlw W ; Faz um ou exclusivo de W com W.

:W=10101010
:W=10101010
: 00000000
; o valor sera salvo em W.

Mas, pode ser assim:

moviwB’'11110000’ ;carregaWeom11110000

movf uva ;carregauvacom 11110000
moviwB’' 01110001’ ;carregaWeom01110001

xorlw uva ; Faz o ou exclusivo com uva e salva em W

: W=01110001
;uva=11110000



70
X 10000001
;ovalordeWsera1000000 1

Flags afetados:
- Z —> do registrador STATUS

Existem mais duas instrugdes que podem nao funcionarem com todos os microcontroladores PIC e
por isto ndo serdo comentadas aqui. O préprio fabricante dos PICs, a Microchip™ n&o recomenda
0 uso delas.

Eles sao:

OPTION -> faz registro OPTION = W;
TRIS —> faz o registro TRIS = W.

26.1. Operadores do MPASM:

O MPASM ¢ o software compilador que esta incluido no MPLAB. Compilar em linguagem simples,
que dizer transformar os menndnicos do assembly, ou instrugcbes do assembly, no famoso cddigo
de maquina ou no portugués claro, um monte de zeros e uns.

Os operadores sdo comandos reconhecidos pelo MPASM e que podem ser usados nos
programas, um muito usado neste livro é 0 $.

Vamos falar dele, especialmente, mas, antes vamos mostrar outros.

Operadores matematicos: + —>adicao
- —> subtracéo
/ —> divisdo

*

—> multiplicagdo
% —> restante de uma divisao

Operadores relacionais: = —>igual
I —> diferente de
—> maior
—> menor
= —> maior ou igual
= —>menor ou igual

ANV AV

Operadores ldgicos: ~ —> complemento
<< —>rotacao para a esquerda
>> —> rotagdo para a direita
&& —> and (funcgao légica é 6bvio)
| — OU bit a bit
N —> ou exclusivo
& —> E ou and, bit a bit
II'—>OU ou or

Operadores de atribuicao: = —>igual

Poderiamos falar mais sobre isto, mas, vamos ver como usar o $ e deixar que vocé aprenda a usa-
lo e faga “experiéncias”. Nao se esqueca da homepage que pode ajuda-lo.



71

Para aprender a usar o $ o ideal é ver exemplos e depois defini-lo. Dai vocé compara uma coisa
com a outra e tem suas conclusoes.

Normalmente usamos o operador $ junto com a instrugdo goto, com um nimero e com o0s
operadores matematicos + ou -.

Exemplo:

btfsc portb, 0 ; testa se o bit 0 da portb é igual a 0.
; Se for zero pula a préxima linha
goto $ - 1 ; a instrugéo goto junto com os operadores
; S e (-) e o numero 1 acontece o seguinte:
; se 0 bit 0 da portb néo for zero a linha de
; goto serd linha e o goto ird mandar o programa
;para $ - 1. Mas onde é $ - 1 vocé me pergunta e
; eu respondo: $ - 1 é a posicdo atual do PC
; (program counter) menos (-) uma (1) linha,
; OU seja, na linha que tem a instrugéo btFsc.
; Enquanto o bit 0 da portb n&o for zero o
; programa ficara em “Looping” entre estas duas linhas.

Traduzindo, o operador $ manda o programa para a posicdo atual do PC (program counter ou
contador das linhas do programa). Se colocarmos junto um ndmero mais um sinal de (+) ou (-)
acontecera o seguinte:

goto $ -1, volta para a linha anterior;

goto $ - 2, volta duas linhas;

goto $ - 3, volta trés linhas e assim adiante;

goto $ + 1, vai uma linha para frente ou visualmente falando, uma linha para baixo;
goto $ + 2, vai duas linhas para frente e assim adiante.

Com este operador podemos enviar um programa para uma determinada posi¢cao sem indicadores.
O $ faz o que faz, pois, pega a posicédo atual do PC, que é a linha em que ele esta, e subtrai ou
soma linhas de acordo com os operadores e nimeros que estdo junto com ele. Teste os outros
operadores.

Diretivas ou Diretrizes do MPASM:

Com estes “comandos” que néo sao instrugées dos PICs, mas, que sdo entendidas pelo MPASM
vocé conseguira fazer um programa mais eficaz e mais rapidamente. Muitos destas diretivas sao
utilizados nos cabegalhos dos programas.

Vamos estuda-los em ordem alfabética:

Diretiva:
_BADRAM —> define enderegos néo validos na memoria RAM do PIC.

Uso:

_badram D’ 10’ — D’ 30’ ; os enderecgos de 10 a 30 sdo invalidos.
; O D maiusculo indica que o endereco
; esta em decimal.

Explicacéo:



72

Na verdade esta diretiva nem precisa ser usada pois, o PIC ja tem definidos os enderegos invélidos
(veja mapa ou banco de memédria), mas, caso vocé “queira” usar, antes dela deve ver outra
diretiva. Dai fica assim:

_maxram D’ 100’ ; “maximo enderecamento”

_badram D’ 10'-D’ 30’°;

Diretiva:
BANKISEL —> gera um cédigo de acesso que permite o acesso indireto ao banco de memaria. Nos
PICs que estamos estudando o responsavel por isto é o flag IRP do STATUS.

Diretiva:

BANKSEL —>gera um cédigo para acesso indireto aos bancos de meméria. Com esta diretriz
ajustamos automaticamente os bits RP0 e RP1 do STATUS para ir para o banco de memoria onde
esta o registrador que buscamos.

Uso:

banksel intcon ; ajusta RPO e RP1 para irmos para o banco
; de memodria onde esta o intcon.

Diretiva:

CBLOCK —> esta diretriz define um bloco de varidveis e/ou constantes. Ela é muito usada nos
programas mostrados neste livro e facilita bastante a confeccao do cabegalho do programa. Vem
sempre acompanhada da diretriz ENDC.

Uso:

cblock 0 x 20 ; define enderec¢o 20 em hexadecimal como
; inicio dos variaveis

tempo ;

tempo1 ;

tempo bom ; variaveis

beleza ;

legal ;

endc ; define o final dos variaveis

Diretiva:
CODE —> permite que partes de programas sejam ligadas a partes de outros programas para
formar uma “coisa” maior.

Diretiva:

Duas under lines

_ CONFIG —>define os fusiveis dos PICs ou os bits de configuracdo. Esta diretiva € muito
utilizada (eu aconselho vocé a usé-la em todo programa). Ela fica no cabegalho. Caso vocé nao
coloque esta linha de configuracéo, devera selecionar estas opgdes no gravador do PIC. No nosso
caso no gravador da Exsto, isto é configurado no software de gravacgéo.

Veja as defini¢des dos PICs usados neste livro:

_boden_on —> se ligado o PIC resetara se a tensdo de alimentagéo cair para menos do que 4V
durante 100us.

_boden_off —> se desligado o PIC ndo reseta se a tenséo cair para menos de 4V. Mas, vocé deve
saber se 0 seu projeto permite isto.



73
_cp_all —> protege toda a memoria evitando-se cépia. Da para regravar mas nao copiar ou ler o
que esta gravado.
_Cp_75 —> protege parte da meméria.
_cp_50 —> protege parte da meméria.
_cp_off —> codigo de protecao desligado. Alguém pode copiar o seu programa.
_cp_on —> protege a memoria toda contra copia.

_pwrte_off —> desabilita o reset interno do PIC. Use esta opgéo se estiver usando um circuito de
reset externo.

_pwrte_on —> habilita o reset interno do PIC, ou seja, o PIC s6 comecara a funcionar depois de
72ms, apos vocé colocar Vcc no MCLR. Vocé pode ligar o Vec com o MCLR.

_wdt_on —> liga o watch-dog. Se esta opcao estiver ligada vocé deve resetar o watch-dog durante
0 programa.

_wdt_off —> desliga o watch-dog. Nao use esta opgéo se o seu projeto inclui a seguranca fisica das
pessoas.

_lvp_on — permite a programagao em baixa tensédo (5V). Deve ficar desabilitada com a maioria
das placas de gravagao. Usada em ICSP.

_lvp_off — a gravacao deve ser feita com tensao de 13V.

_mclre_on —> permite o reset externo através da colocacdo de 0 volts no pino MCLR. Deve ficar
habilitado.

_mclre_off —> ndo permite o reset ou “clear” externo.

_er_osc_clkout —> usado quando o oscilador externo é composto por uma constante RC e temos a
saida de clock no pino Ra6.

_er_osc_noclkout —> oscilador RC sem saida de clock.

_intrc_osc_clkout —> oscilador interno de 4 MHz com saida de clock pelo Ra6 ou porta,6 (pode
trabalhar em 37 kHz).

_intrc_osc_noclkout —> oscilador interno de 4 MHz sem oscilador externo. Ra6 vira uma 1/O (pode
trabalhar em 37 kHz).

_extclk_osc —> usado com clock externo, entrando no pino porta,7 (Ra7) e sem saida na porta,6.
O Ra6 sera uma /O (entrada/saida).

_lp_osc —> usada para oscilar o cristal de baixa freqiéncia. Cristais abaixo de 200 KHz. Vocé sabia
gue existem cristais de 15 kHz?

_xt_osc —> para cristal ou ressonador entre 100 kHz a 4 MHz.

_hs_osc —> para oscilador com ressonador ou cristal acima de 4 MHz.



74
Normalmente estas definicdes sado escritas uma ap6s a outra, com o uso do operador &, e
colocadas no cabecalho do programa.

Usando osciladores internos podemos trabalhar em 4 MHz ou 37 KHz. Selecionamos isto no
registrador PCON através do flag OSCF.

Se OSCF = 0 —> clock de 4 MHz.
Se OSCF = 1 —> clock de 37 KHz.

Estes valores sao aproximados e tem uma tolerancia.
Exemplo de linha de __config:
__config _boden_on & cp_on & pwrte_on & wdt_off & lvp_off & mclre_on & _xt_osc

Diretiva:
CONSTANT —> define um valor constante para uma palavra.

Uso:
Constante  meia dlzia =6

Diretiva:

#DEFINE —>define uma palavra ou pequeno texto que serd associado had uma fungdo em
assembler. Desta forma colocamos no programa o texto ou palavra ao invés da instrugdo, mas,
toda vez que a palavra for encontrada no programa, as instru¢gées associadas serdo executadas.

Uso:
#define botao porta, 2 ; toda vez que botao for encontrado
; estaremos falando do porta, 2
#define led_aceso bsf portb, 1 ; toda vez que encontrarmos
; led_aceso, a instrucao bsf
; sera executada e acendera o
; led na portb, 1
Explicacéo:

Nao tenho muito que explicar, mas, posso garantir que esta diretriz € muito Util.

Diretiva:
DA — armazena conectores no rom ou Flash.

Diretiva:
DATA —> preenche a meméria com um valor definida por um texto ou palavra.

Diretiva:
DB —> vai encher a memoria de programa byte ap6s byte.

Diretiva:
DE —> inicializa os dados da EEPROM interna durante a gravacgao.

Diretiva:
DT —> cria uma tabela na memdria de programa.

Diretiva:
DW —> coloca expressbes na memoria de programa uma apds a outra.



75

Diretiva:
ELSE —> usada junto com IF.

Diretiva:
END —> esta diretiva deve estar no final de todo programa para fazer com que o compilador pare
de “montar” o programa.

Uso:

moviw 10 ; carrega W com 10

end termina o programa

ou

gotoy ;vai paray

X: indice para instrugdo goto
end final do programa

y: indice para goto

goto x ; vai para x

O final do programa nao esta sempre no final do que esta escrito. Fique atento a isto.

Diretiva:
ENDC —> ¢ usada junto com CBLOCK. Define o final de um bloco de constantes.

Uso:
cblock ; inicio dos constantes

tempo ;
tempo 1 ;
tempo bom ;
tempo 3 ;

endc ; final das constantes

Diretiva:
ENDIF —> indica o final de um teste condicional. Deve ficar no final dos testes. Usados com IF.

Diretiva:
ENDM —> finaliza uma macro.

Diretiva:
ENDW —> é usado para definir o final de um bloco de repeticdo que também pode ser chamado de
Loop. Normalmente usamos ela junto com a diretiva WHILE.

Diretiva:
EQU —> associa um nome ha um endereco na meméria.

Uso:
tempo1 equ 0XOD ; 0 valor de tempo1 sera salvo no



76

; endereco 0X0D em hexadecimal

Diretiva:
ERROR —> cria uma mensagem de erro para o usuario programador.

Diretiva:
ERRORLEVEL —>.9 define o tipo de mensagem de erro.

Capitulo 27
POR QUE USAR O MPLAB 5.7.40?

Vamos utilizar esta verséo do MPLAB, pois ela é mais leve e roda em maquinas mais simples mais
rapidamente. Esta é o principal motivo para usar esta versao deste ambiente de desenvolvimento
integrado. Mas, veja se ele tem o PIC 16F84 e os PICs 16F627, 16F627A, 16F628, 16F628A e
também 16F877 e 16F877A (nosso futuro).

Nada impede que vocé use e ou até aconselho, outras versdées da MPLAB. Vocé pode instalar
mais de uma, basta na instalagdo escolher um caminho diferente para cada uma.

Eu tenho em minha maquina, duas versodes.

Capitulo 28 ,
SUB-ROTINAS DE TEMPO (A VERDADE POR TRAS DAS
LOOPINGS)

Existem algumas maneiras de se calcular o tempo de loopings, algumas mais precisas ou menos
precisas, mas, tudo depende da sua aplicagéo.

Uma das formas mais simples e imprecisas, mas, que lhe dard uma nocgao rapida do tempo de um
looping, de um programa pronto é pegar o nimero de ps gasto no looping principal, multiplicar pelo
namero deste looping (N) e multiplicar este valor pelo nimero dos outros loopings (N1, N2, efc).
Observe que em uma sub-rotina de tempo os loopings estao “um dentro de outro” e interagem um
com o outro.

Baixe a tabela sobre delay

Este capitulo comegou a ser escrito em 1998, mas, teve uma “parte” em especial no ano de 2004,
quando eu e meu ex-supervisor, o lvon Luiz, quase saimos no brago para chegarmos a conclusao
sobre os loops de tempo. Finalmente eu me dei por vencido e adotei algumas idéias dele.

“Faz bem aprender com os outros”.

Independente disto, o MPLAB vai oferecer ferramentas para vocé criar uma rotina de tempo super
preciso, como o stopwatch.

Observacdes:
- O clock usado como referéncia neste capitulo é de 4 MHz.

- As instrucdes tém a duracao de 1 ou 2 ciclos de maquinas.

- 1 ciclo de maquina = 1us.

- 2 ciclos de memoria = 2us.

- Se usar clock diferente, os periodos das instrugdes mudam e vocé precisa levar isto em
consideragao nas equacgoes.

- Isto foi o mais proximo do loop perfeito que chegamos.



77

Capitulo 29 ,
EEPROM/E2PROM E O BICHO

Agora vamos ver como escrever e ler a memoria EEPROM que esta dentro do PIC. Usamos esta
memoéria para, por exemplo, gravarmos uma senha e salva-la e mesmo desligando o PIC, ser
capaz de utiliza-la novamente, ou seja, ela ndo se perdera.

Usando a EEPROM podemos entrar com a senha que temos e gravar uma senha nova e nunca
perdé-la. Sem a EEPROM isto € muito dificil...

Primeiro com o 16F84:

Escrevendo na EEPROM interna:

bcf status, rp0 ; seleciona o banco 0 de meméria

moviw 5 ; carrega W com 5

movwf eeadr ; carrega o registrador EEADR com o namero 5.
; Ele esta no banco 0 por isto fomos para la.

moviw 25 ; carrega W com o numero 25, este sera o valor
; gravado e 5 serd o enderec¢o onde é gravado
; este valor.

movwf eedata ; carrega o registrador EEDATA com o valor 25

bcf intcon, gie ; desabilita as interrupgdes para que o PIC nédo
; seja resetado devido a EEPROM

bss status, rp0 ; volta para o banco 1 da meméria, para

; poder ir para o registrador EECON1 que
; permitira gravar na EEPROM

bsf eecon1, wren ; habilita escrita na EEPROM

moviw 85 ; carrega 85, em decimal, em W *

movwf eecon2 x ; carrega eecon2 com 85 *

moviw 170 ; carrega 170, em decimal, em W *

movwf eecon? ; carrega eecon2 com 170 *

bsf eecont, wrc ; coloca 1 no flag wr do registrador eecon1
; € comega a gravar.

btfsc eeconi, wr ; testa se ofFlag wr esta em 0. Se estiver

; acabou a gravacgao e pula a linha seguinte.
; Se estiver em 1 ndo acabou € 1é a linha

; seguinte.
goto $ - 1 ; volta para a linha anterior e fica neste loop
;até que wr seja zero e acabou a escrita.
bcf eecont, eeif ; zera o bit EEIF evitando interrupgéo.
bcf eecont, wren ; desabilita a escrita na EEPROM
bcf status, rp0 ; vai para o banco 0 da meméria
bsf intcon, gie ; habilita as interrupgoes.

* Estas quatro linhas e/ou quatro instrugbes sdo uma seqiéncia usada como seguranga, de forma
gue ndo ocorram gravagbes por acaso na EEPROM. E necessario se carregar o registrador
EECON2 com 85 em decimal ou 55H em hexadecimal depois 170 em decimal ou AAH em
hexadecimal antes de qualquer tentativa de escrita.



78

Este recurso foi desenvolvido pela prépria Microchip, que é o fabricante, de forma a evitar
gravagdes ndo desejadas. Toda vez que vocé precisar gravar na EEPROM interna precisa usar
esta seqUéncia que funciona entdo como um tipo de cédigo ou senha de permissdo para gravar.
Vocé pode perguntar como podem acontecer gravagdes indesejadas e eu lhe respondo com um
exemplo pratico de diversos equipamentos que usam EEPROM. A resposta é: picos de tensédo na
alimentacéo.

Lendo a EEPROM interna:

bcf status, rp0 ; seleciona o banco 0 para poder
; “achar” o registrador EEADR
moviw 5 ; carrega W com 5, que ira ser
; 0 endereco
movwf eeadr ; carrega o registrador EEADR
; com o numero 5 (endereco 5)
bsf status, rp0 ; volta para a banco 1 para “achar”
; 0 registrador EECONT1
bsf eeconi, rd ; 1€ o registrador. Isto é feito colocando-se
; 1 no flag rd do registrador EECON1
bcf status, rp0 ; volta para o banco 0 para poder “ver”

; 0 registrador EEDATA
movf eedata, w (ou 0) ;faz o valor de W igual a EEDATA que
; corresponde a 25 em nosso exemplo.
movwf dadoseeprom ;salva o valor de W, que é o valor do
; endereco 5 da EEPROM no registrador
; dadoseeprom

Agora o 16F628/16F628A:
Escrevendo na E2PROM interna:
bsf status, rp0 ; seleciona o banco 1. Neste PIC temos

; todos os registradores que precisamos
; (espelhados).

moviw 5 ; carrega W com 5

movwf eeadr ; carrega o endereg¢o 5 no registrador EEADR
moviw 25 ; carrega W com 25

movwf eedata ; carrega a data 25 no registrador EEDATA
bcf intcon, gie ; desliga as interrupgdes

bsf eeconi, wren ; permite escrita no EEPROM

moviw 85 ; carrega W com 85

movwf eecon2 ; carrega eecon2 com 85

moviw 170 ; carrega W com 170

movwf eecon2 ; carrega eecon2 com 170. Estas 4 Ultimas

; instrucdes sdo uma “senha” de protecéo
; contra gravagdes indesejadas

bsf eeconi, wrv ; comeca a escrita

btfsc eecon1, wr ; enquanto wr for 1 aguarda a escrita

goto $ - 1 ; faz o loop enquanto ndo termina a escrita
bcf eecont, wren ; Ndo permite mais a escrita

bsf intcon, gie ; liga as interrupgdes

bcf status, rp0 ; volta para o banco 0 que é o “banco de

: trabalho” do PIC

Lendo o 16F628/16F628A:



79

bsf status, rp0 ; banco 1

movliw 5 W=5

movwf eeadr ; vai para enderego 5

bsf eecont, rd ; 16 valor no endereco 5
movf eedata, w (ou 0) ; W = eedata = dados = 25
bcf status, rp0 ; volta banco 0

movlw dadoseeprom ; salva leitura em dadoseeprom

32.1 Registradores usados com a EEPROM:

S&o quatro os registradores usados com a EEPROM interna dos PICs.
Eles séo:

EEADR - responsavel pelo enderegamento da meméria EEPROM. No PIC 16F84 teremos apenas
64 posicoes de memoéria ou de 0 a 63, em decimal. No PIC 16F62X teremos 128 posicdes ou bytes
de memoria ou de 0 a 127, em decimal.

EEDATA — é através deste registrador que trabalhamos com os dados que queremos gravar ou ler
da EEPROM. O dado é colocado neste registrador e o endereco é colocado na EEADR.

EECON1 — este registrador é conhecido como registrador de controle 1. No PIC 16F84 este
registrador tem cinco flags ou bits usados e no PIC 16F62X sao apenas quatro flags ou bits.

EECON2 — este registrador ndao tem nenhum ajuste que passa ser feito pelo programador e/ou
técnico. Ele é utilizado para evitar que ocorram escritas ndo desejadas. Vimos o seu uso nos
exemplos anteriores.

L/E = permite leitura e escrita (R/W)
Os bits 7, bit 6 e bit 5 “nao existem”, e devem ser lidos como 0 (zero).

Bit 4 — EEIF —> determina a interrupc¢ao do final da escrita.
Bit 4 = 0 = ainda n&o acabou a escrita.
Bit 4 = 1 = ja acabou de escrever e € preciso resetar ele(tornar 0) pelo software.

Bit 3 — WRERR —> este bit indica erro na escrita da EEPROM.
Bit 3 = 0 = a escrita foi terminada com sucesso.
Bit 3 = 1 = a escrita ndo foi feita corretamente.

Bit 2 — WREN —> este flag habilita a escrita na EEPROM.
Bit 2 = 0 = escrita na EEPROM néo é permitida.
Bit 2 = 1 = permite que se escreva na EEPROM.

Bit 1 — WR —> este flag define o inicio da escrita. Ele aciona a escrita.

Bit 1 = 0 = indica que a escrita terminou.

Bit 1 = 1 = colocando-o em um (1) a escrita comega e fica em 1 até que ela termina. Quando a
escrita terminar o PIC coloca este bit ou flag em 0 e podemos usar isto para confirmar a escrita. S6
da para vocé colocar 1 neste flag, o 0 é por conta do PIC.

Bit 0 — RD —> este bit define o inicio da leitura da EEPROM.
Bit 0 = 0 = ndo comeca a ler a EEPROM.



80

Bit 0 = 1 = inicia a leitura da EEPROM e fica em 1 até terminar a leitura. Quando terminar a leitura
0 PIC o coloca em 0 e isto pode ser usado para se saber quando aconteceu o final da leitura. S6
da para colocar 1 neste flag o0 0 é “func¢édo” do PIC.

32.2. AEECONT1 do 16F62X (16F627, 16F628, 18F628A):

L/R —> permite escrita e leitura pelo usuario (R/W).

Todos os flags funcionam como o da 16F84, menos o bit 4, que ndo existe neste registrador.
Observe os software dos dois tipos de PICs e veja as diferengas.

Podemos perceber que os registradores EEADR, EEDATA, EECON2 sao praticamente,
“transparentes” para vocé. Apenas o EECON1 permite mais “interagéo”.

Informacoes adicionais 1
PIC COM “A” E SEM “A”

Até onde eu sei a diferenca entre um PIC com final A e sem final A esta na estrutura interna. Os
dois tém as mesmas fungbes e um pode substituir o outro. Ao menos foi isto que verifiquei na
pratica e que constatei na conversa com amigos experts em PIC.

E como uma UPGRADE no PIC. Que me perdoem os catedraticos mas, é assim que enxergo.

Mas, isto ndo quer dizer que vocé nao precise setar o seu gravador, sdo necessarias algumas
“coisinhas” para que um funcione no local do outro.

12 —> Colocar o arquivo include correspondente ao PIC usado;

2° —> Mudar o PIC no programa gravador;

3% — Ver se o seu gravador (hardware-plaquinha) é capaz de gravar os PICs com ou sem A no
final.

Informacoes adicionais 2
VARREDURA EM DISPLAYS DE 7 SEGMENTOS - DICAS

-Faca uma tabela de variaveis onde vocé associe as letras que serdo escritas ao cédigo binario
gue acendera cada segmento dos displays.

- Crie uma rotina de tempo, com freqiiéncia entre 30 a 100 Hz. Esta rotina sera usada para fazer a
varredura dos displays.

- Supondo que vocé esteja usando dois displays, tenha claro o seguinte: para cada letra que
acrescentar nos displays devera fazer com que ela seja impressa umas 20 a 30 vezes. Com isto
quero dizer o seguinte:

Se vocé escrever CA nos displays, isto devera sempre ser impresso pela rotina de varredura dos
displays entre 20 a 30 vezes. Chamo isto de rotina de deslocamento.

Supondo que a palavra completa seja CASA o préximo passo € deslocado uma letra, assim o que
aparecera nos displays sera AS.



81

Para fazer isto associe ao final dos 20 a 30 impressdes os cbdigos binarios nas saidas para os
displays, que deverdo ser trocados, entrar na rotina de varredura, repetidamente 20 a 30 vezes,
assim sucessivamente.

Para que o efeito de varredura fique bom é necessario que a cada duas letras exista um loop que
chame a varredura umas 20 a 30 vezes.

Exemplo:

Palavra usada = ELA

Inicio:
moviw E ; escreve E registrador W
movwf display ; escreve E no display
call se ; chama rotina se (varredura de 30 a 100 Hz)
moviw L ; carrega L no registrador W
movwf display ; escreve L no display
call se ; chama rotina se (varredura de 30 a 100 Hz)
decfsz xxx ; decrementa o valor entre 20 a 30 vezes
goto inicio ; volta para o inicio
call see ; retorna do deslocamento (rotina de 20 a 30 vezes)

... proximas letras.

A rotina de varredura se chama “se” e faz os displays ficarem piscando de 30 a 100 vezes por
segundo (30 a 100 Hz).
A rotina de deslocamento se chama “see” e faz com que as letras sejam impressas 20 a 30 vezes.

Informacoes adicionais 1
DISPLAYS LCD BASEADOS NO HD 44780

Baixe o arquivo picdisp

O circuito integrado HD 44780 é muito comum no uso em displays de cristal liquido que trabalham
com linhas e caracteres, por exemplo, 1 x 16 ou 2 x 16. Este nimeros querem dizer o seguinte:

1 x 16 -> 1 linha de 16 caracteres.
2 x 16 -> 2 linhas de 16 caracteres.

A funcdo deste Cl é fazer a comunicacado entre o microcontrolador e os outros Cls usados no
display. Antigamente este Cl era um VLSI montado e soldado do lado de tr4s do display e vocé
podia ver o cédigo dele, mais antigamente ainda ele tinha o formato de um Cl tipo DIL. Hoje em dia
ele vem encapsulado em uma resina e ndo é possivel a leitura de coédigo nenhum. Sao os
avangados tecnolégicos.

Pinagem destes displays:



82

Pino 1 —> terra.

Pino 2 —> Vcc (5 Volts).

Pino 3 —> ajuste de contraste (Vee).

Pino 4 —> RS (entrada) 0 = entrada de inscricdo 1 = entrada de dados.
Pino 5 —> R/W (entrada) 0 = escreve no display, 1 = & o display.

Pino 6 —> E (entrada) habilita leitura, deve estar em 0 e depois de colocado os dados, passar para
1 e voltar para 0. Apds isto temporizar 1ms.

Pino7 —>DBO - I/O.

Pino 8 —> DB 1 - 1/0.

Pino9 — DB 2 - 1/0.

Pino 10 — DB 3 - I/O.

Pino 11 — DB 4 - 1/0.

Pino 12—>DB 5 - 1/O.

Pino 13 —> DB 6 — I/O.

Pino 14 —> DB 7 — I/O.

Por I/O, entenda pinos de entrada ou saida. Isto mesmo. Normalmente entramos com informagdes
em um display mas também podemos ler as informagbes que estao escritas neles.

Quando um display LCD possui back-light ou luz de fundo, quer dizer que é possivel acender uma
luz no fundo do display.

Normalmente os “pontos” que acionam esta luz sao indicadas por “A” e “K” ou “A” e “C”.

“A” de anodo ou positivo.
“K” ou “C” de catodo ou negativo.

Para que passamos usar um display é necessario fazermos a inicializagdo dele. Fazer a
inicializagao é enviar uma série de comandos (bits de 0 e 1) para que o display comece a entender
0 microcontrolador. Esta inicializagdo pode ser feita com 8 ou 4 bits e € um padrado para todos os
displays baseados no HD 44780 (Este Cl virou quase um padréo para displays).

Eu costumo trabalhar com inicializagdo em 8 bits (na contraméo da histéria), mas, teremos acesso
a inicializagdo com 4 bits gragas ao amigo do peito chamado Derli.

Inicializacao em 8 Bits:
Para inicializarmos o display precisamos jogar uma seqléncia de cddigos binarios no mesmo. Para

que isto possa acontecer, o pino RS (pino 4) e o pino R/W (pino 5) devem estar em nivel 0 (entrada
de instrugdo e escrita no display).

Observacéo:
Instrugéo € um comando para o display funcionar.

Escrita € uma informagao que aparecera no display.
Condicoes Inicias:

RS = 0 para mandar as instrugées.

R/W = (R = read = leitura e W = write = escrita) a 0.

E = varia entre 0 e 1 de acordo com as informacdes anteriores.
Sequéncia Binaria:

Liga o circuito e espera 45ms (tempo minimo de 15ms)

Pino 6 (E) = 1



Espera 1ms (pode ser 1us que funciona)
Pino6 (E) =0
Espera 45ms (tempo minimo 4,1ms)

Pino 6 (E) = 1

Espera 1ms (pode ser 1us que funciona)
Pino6 (E) =0

Espera 45ms (tempo minimo 100us)

Pino 6 (E) = 1

Espera 1ms (pode ser 1us que funciona)
Pino6 (E) =0

Espera 45ms (tempo minimo 4,1ms)

Pino 6 (E) = 1

Espera 1ms (pode ser 1us que funciona)
Pino6 (E) =0

Espera 45ms (tempo minimo 40us)

N = 1 se o display for de duas linhas.
N = 0 se o display for de uma linha.

DL = 1 se a inicializacdo for com 8 bits, este caso.

DL = 0 se a inicializacao for com 4 bits.

F = 1 se cada caractere for de 5 x 11 pontos.
F = 0 se cada caractere for de 5 x 8 pontos.

Pino 6 (E) = 1

Espera 1ms (pode ser 1us que funciona)
Pino6 (E) =0

Espera 45ms (tempo minimo 40us)

D = 0 o display fica desligado.

D = 1 o display fica ligado. E interessante e mais didatico deixar D = 1.

C = 0 o cursor fica desligado.

83

C =1 o cursor fica ligado. Aparecera o cursor na tela, como se fosse uma “underline” ou risquinho).

B = 0 o cursor nao pisca.

B =1 o cursor pisca. Eu acho melhor deixar o cursor piscando.

Pino 6 (E) = 1

Espera 1ms (pode ser 1us que funciona)
Pino6 (E) =0

Espera 45ms (tempo minimo 1,64ms)

Esta linha limpa o display.



84

Pino 6 (E) = 1
Espera 1ms (pode ser 1us que funciona)
Pino6 (E) =0

Espera 45ms
ID = 1 o display escreve para a direita.

S = 0 o display néo shift (ndo se desloca).
S = 1 o display shift (se desloca).

Término da inicializagdo com 8 bits.

Podemos perceber que a inicializagdo é uma seqiiéncia binaria com 8 digitos.

Também percebemos que entre uma linha e outra, deve haver um pulso 1 de enable (pino 6 = E) e
depois uma temporizagéo.

Todas estas temporiza¢des sdo conseguidas com rotinas de tempo ou instru¢des nops.
Determinadas letras devem ser substituidas por 0 ou 1 de acordo com o0 que desejamos.

Eu aconselho o seguinte:

D=1
DL=1
C=1
B=1
ID=1
S=1

F = 0 — na pratica, pelo menos na minha, a maioria dos displays tem cada caractere formado por
5 “quadradinhos” na horizontal por 8 “quadradinhos” na vertical e portanto séo 5 x 8.

Mas, escrever no display que € bom nada...

Por enquanto estamos entendendo o display e depois vamos dar recursos para vocé brincar com
ele.

Mas, a teoria ainda ndo acabou.

Cada linha em um display de 16 caracteres é dividida em duas partes. Cada parte possui 8
caracteres. Para escrever apds o oitavo caractere, € necessario enviar uma instrugdo para o
display para que ele enderece o seu banco de meméria RAM em CO que corresponde a 192 em
decimalea 11000000 em binario.

Tudo ha seu tempo...

Rotina para escrever Instrucoes:

bcf porta, 3 ; coloca entrada RS em 1 e permite a entrada de instru¢des no display

movliw b ‘instrugao’ ; colocar a instrugdo em binario em W, repetir isto quantas instrucoes
; forem necessarias

call comando ; chama sub-rotina para escrever instrugdes, 0 nome desta sub-rotina
; € comando.

fomando:

movwf portb ; move o valor de W para a portb que esta ligada com o display

nop ; deixa passar 1us (devido ao clock de 4 MHz)

bcf porta, 2 ; coloca 0 em E (pino 6 do display)

nop ; escreve 1us (poderia ser 1ms mas dai precisaria de outra

; sub-rotina e assim funciona)
bsf porta, 2 ;colocatemE



nop ; espera 1us segundo
bcf porta, 2 ;coloca0emE
; cuidado se mudar os pinos do PIC

j L e . ==== . ==== . ---- sUb-rotina de £ 45ms --- . --- . ---- | -

m45:

moviw 250 ; coloca o valor de 250 em W

movwF tempo ; coloca o valor de 250 na variavel tempo
m451:

moviw 60 ; coloca o valor 60 em W

movwf tempo1 ; coloca o valor 60 em tempo1

m452:

decfsz tempo 1 ; decrementa 1 do valor na variavel tempo1
goto m452 ; vai para m452

decfsz tempo ; diminui 1da variavel tempo

goto m451 ; vai para m451

return ; volta para a linha abaixo do comando call
end ; final dos comandos

R . ---—-.--— . --—-final da sub-rotina --- . --- . === . ----

Rotina para Escrever uma Letra ou Dado:

bsf porta, 3 ; coloca entrada RS em 1 e permite escrita
; de um dado no display

movliw b ‘letra’ ; colocar a letra em binario no W

call escrever ; chamar a sub-rotina escrever para ter os

; comandos necessarios

escrever:
movwf portb ; move o valor de W para a portb
nop ; aguarda um 1us (para clock de 4 MHz)
bcf porta, 2 ; coloca 0 em E (pino 6 do display)
nop ;aguarda 1us
bsf porta, 2 ; coloca 1 no pino E do display
nop ; aguarda 1us
bcf porta, 2 ; coloca zero (0) no pino E do display
; 0s comandos acima, habilitam a entrada
; da letra no display
ms1:
moviw . 250 ; carrega W com 250. O ponto indica decimal
movwf XxXxx ; carrega xxxx com 250
msia:
nop ; perde 1us para ajudar a conseguir a
; sub-rotina de tempo correta
decfsz xxxx ; diminui 1 de xxxx e pula a inscrigdo seguinte

; quando o valor de xxxx for igual a (0) zero.
goto msia ; vai para msia

85



86

return ; volta da rotina
end ; final dos comandos
jmm L mme- . ---- . ---- . -—-- final da sub-rotina --- . --- . ---- . ----

E importante perceber que as sub-rotinas comando: e escrever: devem ficar no final do programa
e a chamada para ir até uma ou outra deve ficar na posicao desejada do programa.

Veja:

rotina para escrever instru¢coes

Assembler em um ponto
do programa

assembler

call comando

comando:

assembler
no final do programa

assembler
Andando com o Texto:

Lembre-se de fazer o bit RS do display ficar igual a 0, veja:
bcf porta, 3 ; 0 bit RS sera igual a zero

Lembre-se também que sera necesséario se criar uma rotina de temporizagdo para definir a
velocidade de deslocamento.

Um exemplo ficaria assim:

goto deslocamento ; vai para a rotina de deslocamento

X rotina de deslocamento

deslocamento:

bcf porta, 3 ; impa RS e escreve comando
moviwB ‘00001110 ; carrega W para mover o texto
; para a direita
movwf portb ; carrega o portb com o valor de W
bcf porta, 2 ;coloca0emE
nop ; aguarda 1us
bsf porta, 2 ;colocaliemE
nop ;aguarda 1 us
bcf porta, 2 ; coloca 0 em E, e finaliza as instrugdes

; para o deslocamento

;-—-.--—-.-—.--—-rotinado 1 a2 segundos



87

1a2s:

movliw 4 ; carrega W em 4

movwf tempo ; carrega tempo com o valor de W

1a2sa:

moviw 40 ; carrega W com 40

movwf tempo1 ; carrega tempo1 com 40

1a2sb:

movliw 250 ; carrega W com 250

movwf tempo2 ; carrega tempo2 com 250

1a2sc:

nop ; perde 1us (4 MHz)

decfsz tempo2 ; decrementa tempo2 4us x 250 = 1ms
goto 1a2sc ; vai para 1a2sc

decfsz tempo1 ; decrementa tempo1 3us x 40 = 120us
goto 1a2sb ;vai para1a2sb

decfsz tempo ; decrementa tempo Bus x4 =12
goto 1a2sa ;vaipara 1 a 2sa

return ; volta & chamada

end ; final dos comandos

Observe estes tempos para ver de uma forma simples, como funciona um loop de tempo.
O loop chamado de (1) dara 250 “voltas” e perdera 4us em cada uma;

1us na instrugéo nop;

1us na instrugdo decFsz;

2us na instrucao goto.

Sendo assim 250 x 4us = 1ms.

O loop chamado de (2) dara 40 “voltas” e perdera 3us em cada uma:

1us na instrugdo decFsz;
2us na instrugéo goto.

Sendo assim 40 x 3us = 120us.

O loop chamado de (3) dara 4 “voltas” e perdera 3us em cada uma:

Sendo assim temos 4 x 3us = 12us.

Para encontrarmos o tempo total gosto para que este loop termine, basta multiplicar estes trés
tempos (isto € uma forma simples e ndo com 100% de precisdo, na verdade a tempo real sera
sempre maior que o calculado assim).

Veja:

1ms x 120us x 12us = 1.000 x 120 x 12 =1.440ms = 1,44s.



88

O tempo serd de aproximadamente, 1,44s para o deslocamento do texto. Este tempo serd o
necessario para o texto se deslocar de uma posicao no display para outra, ou seja, se o display
tiver 16 posi¢des o tempo total sera de 1,44s x 16.

Um display de 1 x 16 € formado por duas linhas, uma apés a outra de 8 caracteres. Para escrever
apds o oitavo caractere € necessario enderegar a memoéria RAM do display para COH ou 192
decimal ou 11000000B. Para fazer isto podemos usar a seqiiéncia em assembler seguinte:

bsf porta, 2 ;

bcf porta, 3 ;

movliw B 11000000’ ; ou 192 em decimal ou CO em hexadecimal
movwf portb ;
nop b
bcf porta, 2 ;
nop ;
bsf porta, 2 ; reset, seta e reseta o bit E do display
nop ;

bcf porta, 2 ;

moviw 250 ;

movwf tempo ;

X:

moviw 60 ;

movwf tempof1 ;

x1:

decfsz tempo1 ;

goto x1 ;

decfsz tempo ;

goto x ;

bsf porta, 3 ;

Para displays de 2 x 16 o procedimento € o mesmo, sé que deve ser feito apos se escrever o 16
caracter.
Em alguns displays devemos mudar o endereco para 40H para mudar de linha.

A numeracao dentro do display estd em hexadecimal e em um padrdo que comega em 80H, mas,
normalmente podemos chamar este endereco subtraindo 80H dai ficaria assim:

Sem somar 80H (lembre-se, vocé pode ir para o endereco que quiser do display somando ou nao
80H ou 128 decimal), vocé tem a seguir os enderegos iniciais e finais de cada linha de diversos
displays.

20 x 1:
Linha 1 — 00H as 13H

20 x 2:
Linha 1 —> 00H as 13H
Linha 2 —> COH a D3H

20 x 4:

Linha 1 —> 00H as 13H
Linha 2 —> 40H as 53H
Linha 3 —> 14H as 27H



89

Linha 4 —> 54H as 67H

40 x 2:
Linha 1 — O0H as 27H
Linha 2 — 40H as 67H

Lembre-se de chamar o endereco certo.

Observacéao:

As letras podem ser escritas assim:
moviw ‘A’ ; carrega W com a letra A
movwf portb ; escreve A no display

Mas, isto é uma caracteristica da MPLAB e podera n&o funcionar com outro compilador.

Lembre-se sempre de terminar ma escrita em um display com um loop ou um loop sem fim,
principalmente se vocé quer fazer apenas um teste inicializando e escrevendo alguma palavra.

Informacoes adicionais 3
EXEMPLOS DE SUB-ROTINAS DE TEMPO

- Rotina de + 15ms V — 15.000us (supondo 4 MHz de Clock).

ms: ; aqui se perde o tempo da instrugédo Call
moviw 230 ;+ 1us
movwf tempo ;+ 1us
ms15: ;
moviw 20 ;+ 1us
movwf tempo1 ;+ 1us
msisa:

decfsz tempo1 ; + 1us

goto msi15a ; + 2Us
decfsz tempo ; + 3us
goto msi15 ;
return ; + 2Us

- Rotina de + 4,1ms — 4.100us (para 4 MHz de Clock):

ms: ;
moviw 180 ;
movwf tempo2 ;

ms4,1:
moviw 6 ;
movwf tempo3 ;

ms4,1a: ;
decfsz tempo 3 ;
goto ms4,1a ;
decfsz tempo2 ;



goto ms4,1 ;
return ;

- Rotina de + 40us (para clock de 4 MHz):

ms: ; ainstrucao Call chama ms (+ 2us)
moviw 12 ; carrega W com o valor 12 (+ 1us)
movwf tempo5 ; carrega o variavel tempos com o

; valor do registrador W (+ 1us)

ms40: ; nome para “ajudar” o goto
decfsz tempo5n ; diminui 1 de tempo 5 e perde 1us quando
; tempo 5 for = 0 pula a instrugdo seguinte (+ 1us)
goto ms40 ; vai para ms40 (+2us)
return ; volta para a linha apés a instrugao Call (+ 2us)

- Rotina de + 100us (para um cristal de 4 MHz):

ms: ;
moviw 33 ;
movwf tempo4 ;

ms 100: ;
decfsz tempo4 ;

goto ms100 ;
return ;

- Rotina 1,64ms — 1.640us (para um xtal de 4 MHz):

ms: ;
moviw 82 ;
movwf tempo6 ;

ms1,64: ;
moviw 5 ;
movwf tempo7 ;

ms1,64a: ;
decfsz tempo7 ;
goto ms1i,64a ;
decfsz tempo6 ;
goto ms1,64 ;
return ;

- Rotina de + 60s (para xtal de 4 MHz):

ms250: ;

moviw 240 ;W =240
movwf y ;Y =W =240
ms250c:

movLw 250 "W = 250

90



91

movwF tempo ; tempo = W =250

ms250a: ;

moviw 250 ;W =250

movwf tempo1 ; W =tempo1 =250

ms250b: ;

nop ; espera 1us

decfsz tempo1 ; diminui 1 de tempo1 e pula a préxima
; linha se tempo 1 =0

goto ms250b ; vai para ms250b

decfsz tempo ;
goto ms250a ;
decfsz y ;
goto ms250c ;
return ;
end ;

veja que se a sub-rotina for a dltima “coisa” do programa, mesmo depois da instrucao return é
“interessante” se colocar a instrugéo end.

- Rotina de tempo de + 250ms (4 MHz):

ms250: ; uma instrucao call chama ms250 e isto
; demora 2 ciclos de memoria (2us)
moviw 50 ; 0 registrador de trabalho W sera carregado
; com o valor 250
movwf tempo ; a variavel tempo sera carregada com o valor

; do registrador W

ms250A: ; nome para se conseguir usar a instrucao
; goto e fazer Loop
moviw 250 ; carrega W com 250 em decimal
movwf tempo 1 ; carrega tempo 1 com o valor de W
ms250B: ; nome para se chamar com a instrugao goto
nop ; perde 1 ciclo de maquina
decfsz tempo 1 ; diminui 1 de tempo 1 quando o tempo 1 for
goto ms250B ; igual a 0 pula a linha seguinte, que é esta.
; A linha acima vai para ms250B.
decfsz tempo ; Decrementa ou diminui 1 de tempo
goto ms250A ; manda o programa para o nome ms250A
return ; volta para uma linha apds a instrugao Call
end ; Ultima linha do programa

Perceba que para se fazer uma sub-rotina de tempo, precisamos de nomes:

- Uma para chamar a rotina, neste caso ms250;
- Outros para fazer os loopings, neste caso ms250A e ms250B.

Também precisamos de varidveis, neste caso tempo e tempo1.



92

Informacoes adicionais 4
INICIALIZANDO UM DISPLAY COM 4 BITS

O bom de inicializar um display com 4 bits é que vocé “economiza” quatro fios, ou quatro pinos do
PIC que poderao ser usados para outras fungdes. “Os bits nao usados (DB3 a DB0) devem ter o
valor zero (0)”.

Veja a inicializagao:

1 —loop de 15ms

2 - RS R/W DB7 DB6 DB5 DB4
0 0 O 0o 1 1

3 —loop de 100us

4 — RS R/W DB7 DB6 DB5 DB4
0O 0 0 0 1 1

5 —loop de 100us

6 — RS R/W DB7 DB6 DB5 DB4
0 0 0o 0 1 1

7 —loop de 4,1ms

8 — RS R/W DB7 DB6 DB5 DB4
O 0 o o0 1 0 —> esta linha define inicializacdo em 4 bits

9 — loop de 40us

10 — RS R/W DB7 DB6 DB5 DB4
0 0 0 0 X 0
0o 0 1 F X X —> o valor de F define a matriz do display
se F =1 display de matriz 5 x 11
se F = 0 a matriz do display é de 5 x 8
X = n&o importa o valor

11 — Loop de 40us

12 — RS R/W DB7 DB6 DB5 DB4
0 0 0 0 0 O
o 0 1 D C B —D=0display desligado, D = 1 display ligado
C = 0 cursor desligado, C = 1 cursor ligado
B = 0 cursor sem piscar, B = 1 cursor piscando

13 — Loop de 40us

14 — RS R/W DB7 DB6 DB5 DB4
0 0 O 0 0 O
0 0 O 0 0 1

15 — Loop de 1,64ms



93

16 — RS R/W DB7 DB6 DB5 DB4
0 0 0 0 O O
0 0 0O 1 ID S — ID=1cursorparadireita, ID = 0 cursor para esquerda
S = 0 escrita ndo se move, S = 1 escrita se move

Terminou a inicializagédo de 4 bits.

Lembre-se que entre cada seqliéncia de bits de instrugcbes, apds os bits, vocé deve fazer o
seguinte:

Pino 6 (E) = 1
Espera 1ms
Pino6 (E) =0

Duvidas? Leva novamente a inicializacdo com 8 bits.

Nao ha necessidade de colocar algum tempo entre a primeira linha de bits e a segunda linha de
bits dos comandos 10, 12, 14 e 16.

Para enviar os comandos ou o que vai ser escrito no display, faca da seguinte forma:
Envie primeiro 0s 4 bits mais significativos e depois os 4 bits menos significativos. Veja:

RS R/W DB7 DB6 DB5 DB4
o o 1 1 1 1

depois,

RS R/W DB3 DB2 DB1 DBO
o 0 1 1 1 1

Informacoes adicionais 5
UMA SIRENE COM PIC E COM FET

A finalidade deste circuito é fazer com que vocé comece a brincar com Mosfets. Esta sirene tera
dois tons, 400 Hz e 1 kHz.
Vamos ver o circuito da sirene sem o PIC.

Faca download do arquivo sirene.rar

RL = alto falante de 8Q e 5 Watts

D1 = diodo de protegdo = 1N4007

Q1 = Mosfet IRF640

C = 100nF para 1kHz e 200nF para 400 Hz
R = 2K2Q x 1/4 Watts

A comutacao entre 0 e 5 Volts na saida Rb1 do PIC fard com que o Fet ora conduza ora corte e 0
alto falante “berre”. O som nao é muito agradavel, mas, o resultado do aprendizado é bom.



94

Informacoes adicionais 6
Testando a inicializacao com 8 bits

A finalidade deste circuito é testar a inicializagdo do display de LCD com 8 bits. Vocé deve saber
inicid-lo na teoria e na pratica com 8 e 4 bits. Aqui estamos apresentando um circuito para
inicializacdo e funcionamento com 8 bits. Vocé pode gravar o PIC na placa Pratic628 da Exsto,
mas, depois o retire e o coloque aqui.

Vocé pode usar este circuito como um mini - placar, onde passam mensagens repetidas. Eu montei
este pequeno circuito para ser usado como placar de um mini - estadio, isto ha long time ago.

Baixe o circuito display_pratica.rar
O display usado é um 2 x 16 baseado no |IC HD 44780.

Através de 7 exemplos que estédo escritos aqui, vocé poderd brincar bastante com o display LCD.
Veja as diferengas entre os programas, faca mudangas, aprenda na teoria e na pratica.

Baixar programas LCD.rar

Informacoes adicionais 7
ICSP

ICSP significa (In Circuit Serial Programing) e traduzindo para um bom portugués, quer dizer
programando o PIC com ele ja montado no préprio circuito. Vocé desenvolve um projeto, vende
milhares e, para isto monta milhares, e s6 programa com tudo “soldado” inclusive o PIC. Como
vocé vendeu centenas de milhares, vocé pode me fazer uma doagao, em cash, que eu agradeco.
Através da programagéo no proéprio circuito ou ICSP, fica muito mais facil vocé fazer um upgrade
no software do seu PIC.

A gravacdo ICSP serve tanto para regravar toda a meméria de um dispositivo Flash, bem como o
que resta de mem@ria em um dispositivo OTP.

O ideal para fazer este tipo de gravagédo é o gravador (hardware) Pro Mate Il da Microchip ou
algum equivalente real.

O ICSP usa cinco pinos para a gravagao do software:

- O clock que vai ligado na RB6.

- Os dados que vao ligados no RB7.

- A tensao de programacao que vai ligado no MCLR/Vpp.
- A tensdo de alimentag¢éo Vcc ou Vdd.

- O terra ou Vss.

Para programar o PIC vocé deve elevar a tensédo de programacao (Vpp) para 13 Volts (entre 3,5 a
13,5 Volts).

Informacoes adicionais 8
O CIRCUITO INTEGRADO MT 8870



95

O circuito integrado MT 8870 é um detetor de DTMF. DTMF s&o aqueles tons emitidos por um
telefone comum. Cada tom DTMF é composto de duas freqUéncias diferentes e com forma
senoidal.

Com um telefone comum, mais um IC destes (pode ser o HT 9170 também), mas um 16F628 vocé
pode brincar de controlar tudo a disténcia via telefone comum/fixo ou telefone celular.

Faca download do arquivo MT8870.rar

O pino 1 é a entrada né&o inversora.
O pino 2 é a entrada inversora.

S6 de ver isto da para perceber que podemos trabalhar com dudio balanceado ou desbalanceado.

O pino 3 define o0 ganho do IC, junto com alguns resistores externos.

O pino 4 gera uma tensao de referéncia e deve ficar ligado com o pino 1.

O pino 5 inibe a detecgéo dos tons. Para detectar ele deve estar em 0 (zero).

O pino 6 desabilita o IC e desliga e oscila. Para o circuito funcionar ele deve estar em 0 (zero).

O pino 7 é a entrada do oscilador.

O pino 8 é a saida do oscilador. Normalmente colocamos entre estes dois pinos um cristal de
3,579545 MHz, que corresponde ha um cristal de cor do sistema NTSC.

O pino 9 é o terra e vai ligado em 0 Volt.

O pino 10 define se as saidas Q1 a Q4 funcionam normalmente ou ficam em TRI-STATE (alta
impedancia). Para funcionarem normalmente, este pino deve estar ligado no Vcc.

Os pinos 11, 12, 13 e 14 sdo as saidas que apresentam um codigo em binario para cada tom
DTMF.

O pino 15 fica em Vcc quando o IC detecta um tom DTMF. Este pino pode ser usado para controle.
Os pinos 16 e 17 estéo ligados hd uma constante RC que determina um periodo para validagdo
dos tons DTMF.

O pino 18 a o0 Vcc que deve ser alimentado com +5 Vcc.

Normalmente os valores de R1 e R2 s&o iguais a 100K, mas, sédo eles que definem o ganho e/ou a
sensibilidade do circuito.

G =R1
R2

Na prética eu ja usei ganho de 10, ou seja, usei R1 = 100K e R2 = 10K, principalmente se a linha
que vocé usar for ruidosa ou a fonte de sua bancada n&o eliminar todo o ripple e RFI.

As saidas Q1 a Q4 e CT fornecem uma corrente baixa e caso vocé queira ligar leds a elas para
analisar o funcionamento, vocé deve usar transistores como driver de corrente, veja:

Informacoes adicionais 9
RS 232 — USART

RS 232 quer dizer padrao recomendado 232 ou, em inglés “Recommended Standard 232”.



96

Este padrédo foi criado ha muito tempo, ha algumas décadas, e hoje em dia a forma correta de
chama-lo é EIA 232, EIA quer dizer, “Eletronic Industries Associaton”.
Existem alguns nomes e sinais que sao definidos por este padrao:

DTE —> terminal responséavel pelo envio da informagdo. Normalmente um microcomputador.

DCE —> equipamento responsavel pelo “recebimento” das informagdes e por manusea-las.

Para explicar poderiamos citar um microcomputador “controlado” ou conectado com uma placa de
programa de PICs, através da porta serial (a do mouse).

Vamos aqui apresentar os sinais usados em um cabo serial DB9 (com conector DB9) com énfase
em aplica¢gdes com microcontroladores.

Tx — transmissdo de dados.

Rx —recepcéo de dados.

DTE — indica DTE pronto.

Terra —gnd.

DCE - indica DCE pronto.

Clear to Send — “pode enviar” — CTS.
Request to Send — “vu enviar” — RTS.

Agora o que eles fazem?

Tx — esta funcionando quando estdo sendo transmitidos bits do micro para o gravador (de DTE
para o DCE). Quando nada é transmitido, sua tensao é negativa em relagdo ao terra e isto significa
nivel logico 1.

Rx — esta operando quando o microcomputador recebe bits do gravador (bits do DCE para o DTE).
Sem uso, nivel légico 1 0 que corresponde ha um nivel de tenséo negativa.

DTE - este sinal passa para nivel légico 0, o que corresponde ha um nivel positivo de tenséo,
quando o micro quer falar com o gravador (0 DTE informa o DCE que quer falar. Acabou a
conversa, ele vai para nivel I6gico 1). Este sinal também pode ser chamado de DTR.

Terra — é o terminal comum entre DTE e DCE.

DCE - este sinal é usado quando o microcomputador € ligado com um modem € ndo é importante
em nossas aplicagdes.

CTS — este sinal é habilitado pelo gravador (DCE) em nivel légico 0 (tenséo positiva) e avisa ao
microcomputador (DTE) que a transmissao de bits pode comecgar.

RTS — este sinal é habilitado em 0 (tensdo positiva) para enviar o gravador (DCE) que ele deve
aceitar os bits transmitidos pelo microcomputador (DTE). Quando o DCE est4 pronto ele avisa com
o sinal CTS.

* Niveis de tensdo dos sinais:

Nivel l6gico 1 —> tensdes entre -3 Volts a -25 Volts em relagéo ao terra.
Nivel l6gico 0 —> tensdes entre +3 Volts a + 25 Volts em relagéo ao terra.

Entre -3 a +3 Volts “tudo pode acontecer” pois estes niveis estdo em uma regido de transicéo e é
muito Gtil que permanegam o minimo tempo nela. Apenas o necessario para a subida e descida
dos sinais.

* Niveis de corrente:

Normalmente se mantém o nivel de corrente inferior a 500mA.

Vocé pode alimentar circuitos simples com estes sinais, sem o uso de uma fonte de alimentacao,
este é o caso de alguns gravadores de baixo custo:

* Velocidades da comunicacdo comuns:



97

300bps
1200bps
2400bps
4800bps
9600bps
19200bps
33.000bps
48.000bps
56.000bps

» Pinagem do DTE (microcomputador):

1 —NC* * em nossas aplicagdes
2 - Rx

3-Tx

4-DTE

5 —terra

6 — DCE

7-RTS

8-CTS

9 - NC*

» Pinagem do DCE (gravador):

1 —NC* * em nossas aplicagdes
2-Tx

3 - Rx

4-DTE

5 —terra

6 — DCE

7-CTS

8 —RTS

9 - NC*

Quando vocé monta um circuito para comunicagao serial pode ser que esteja trabalhando com
niveis TTL (0 e 5 Volts) e precisara converté-los para o padréo EIA 232. Vocé pode fazer isto,
usando o IC MAX 232, que gera tensdes de -10 e +10 Volts a partir de uma tenséo de +5 Volis.

Este tipo de ligacdo necessita da conexdao com o cabo/conector DB9 como mostrado como Null
Modem (sem modem) e é utilizado para se conectar dois DTE (ou dois dispositivos “inteligentes”
como um microcontrolador com um microcomputador).

O cabo entre os dois dispositivos sé sera conectado através de 3 vias que sdo o Rx o Tx e o terra.
Os pinos 8 e 7 sao ligados em curto e os pinos 4,1 e 6 também sao ligados em curto. Isto “engana”
0 microcomputador permitindo a comunicagao.

Com este tipo de ligagdo e com os dois dispositivos trabalhando “na mesma velocidade” nao
precisamos ter o controle de fluxo.

Apenas para informacao, podemos ter dois tipos de controle de fluxo de dados:

- Por hardware — que precisa das linhas RTS e CTS além do Tx, Rx e terra e que é conhecida por
controle RTS/CTS.

- Por software - onde o controle de dados é feito através de dois caracteres/nimeros (caracteres
ASCII) e que é conhecido por XON/XOFF e s6 usa Tx, Rx e terra.



98

*» Algumas consideragoes:

- No modo sincrono s6 poderemos trabalhar como half-duplex (meio-duplo), ou seja, quando ha
transmissao nao ha recepgao e vice versa. Pois um pino é usado para clock;

- Os pinos de comunicagéo sao o Rb1 e Rb2;

- Temos que configurar os registradores préprios da USART;

- O pino Rb1 € 0 Rx em modo assincrono e DT (ou entrada e saida de dados) em modo sincrono;

- O pino Rb2 é Tx em modo assincrono ou entrada/saida de clock. Quando Rb2 é a saida de clock
dissemos que estamos trabalhando em modo mestre. Quando Rb2 é entrada de clock dissemos
que estamos trabalhando em modo escravo;

- Quem gera o clock é o “chefe”;

- Tente trabalhar em modo assincrono, com 8 bits e cabo Null Modem.

Informacoes adicionais 10
ALGUMAS DICAS E ORELHADAS

- Uma forma simples de “parar” um programa é se fazer um loop sem fim.
Exemplo:

loop:
nop ;
goto loop ;

O loop ficara rodando e o programa ficara parado até que o PIC seja resetado.
- Cuidado para nédo confundir O (letra O) com 0 (zero);

- Toda variavel que ird assumir um valor, deve estar indicada no espago de constantes e RAM,
exemplo:

X equ ODH ;
para:

moviw 100 ;W =100
movwF X ; X =100

- Ao fazer um projeto no MPLAB o projeto e o arquivo “.asm” devem estar no mesmo diretério e
este diretorio s6 deve ser usado para eles.

- Quando definir as caracteristicas do compilador coloque as seguintes em off:

- case sensitive
- cross-reference file

Coloque em on:
- INHX8M

- error File
- List File



99

O resto deixe em branco (salvo alguma informacéo especifica ao contrario).

- O ideal é que as portas sejam definidas sempre pelos seus nimeros:

Ra0 =0
Ral =1
Rb3 =3
Etc.

- E necessario compilar o cédigo fonte (.asm), dentro de um projeto. Caso contrario, ele nao
aparece na janela na hora de gravar o PIC (isto para quem usar o MPLAB 5.7.4X para tudo).

- Os valores para se escrever em um LCD podem estar em decimal de acordo com a tabela de
caracteres ja mencionada.

- Podemos escrever todo o programa no bloco de notas e salvar com a terminagao “.asm”. Depois
rodamos o compilador (MPASWIN) e passamos para “.hex”. Depois gravamos.

Se o Propic do MPLAB, comecar a apresentar erros, feche-o e o inicie-o novamente.
- Nunca inicie uma chamada de sub-rotina com um ndmero, exemplo:

call 1ms ;

; isto esta errado

1ms: ;

Faca sempre com uma letra:

call ms;

; isto estd certo

ms: ;

- As versbées do MPLAB acima da 5.7.40 sdo superiores porém s6 rodam com o Windows 98SE
para cima com o XP, Millenium, etc) e se o seu micro for meio “lento” ela sera pesada.

- A versdao do MPLAB 5.7.40 é mais leve, roda em Windows 95 e 98, porém pode apresentar
alguns conflitos com alguns gravadores, versdes de firmawares e pcs.

- Vocé pode usar um software de gravacao para gravar qualquer arquivo “.hex”, mesmo que tenha
sido criado em outro local. Basta importa-lo e mandar gravar.

- Se acontecer persistentemente, erros ao importar um arquivo “.hex” para o MPLAB, desinstale
algum “outro” compilador e instale-o novamente associando-o ao MPLAB.

- Jamais crie mais de um projeto dentro da mesma pasta, pois poderdo acontecer erros na
gravagao do PIC.

- Se apds a gravagado aparecer uma lista de erros, apague a memoria Flash, feche o gravador,
importe o arquivo novamente e grave novamente. Isto pode acontecer, mais provavelmente, se
vocé usa um cabo conversor USB — Serial ou USB — paralelo. As vezes é necessario “ajustes”
nesta comunicagao.



100

O timer0, mesmo sem o prescaler ja apresenta, dividido por dois, um sinal aplicado na entrada
Rb4/TOCKI.

- Em uma sub-rotina, que podera se repetir muitas vezes, podemos usar as mesmas variaveis,
porém os nomes das chamadas para o goto devem ser diferentes.

- Se as diretrizes comegarem da coluna 1, aparecerdo “warnings” no resultado da compilagao.
Deixe um espaco antes de colocar uma diretriz.

Informacoes adicionais 11
Tentando ajudar...

Espero que vocé tenha lido esta apostila inteira e tenha aprendido mais do que ja sabia.

Nossa intengcdo ao escrevé-la, antes de tudo, e ajudar a vocé leitor aprender sozinho. (Deu um
trabalho danado escrever).

Visite estes sites:

www.luizbertini.net/circuitos.html - inclusive circuitos para o PIC
www.luizbertini.net/download.html|
www.luizbertini.net/eletronica.html
www.luizbertini.net/livros.html

Luiz Bertini
De Janeiro a julho de 2004

Santicfy Yourself



